
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

COMPLETION AND TESTING OF A TMR COMPUTING
TESTBED AND RECOMMENDATIONS FOR A FLIGHT-

READY FOLLOW-ON DESIGN

by

Damen O. Hofheinz

December 2000

Thesis Co-Advisors: Alan A. Ross
Herschel H. Loomis

Approved for public release; distribution is unlimited.

DTIC QUALITY lUßgüSi

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the. data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)
Naval Postgraduate School

2. REPORT DATE
December 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
Completion and Testing of a TMR Computing Testbed and Recommendations for a Flight-ready
Follow-on Design

6. AUTHOR(S)
Hofheinz, Damen O.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis focuses on the completion and hardware testing of a fault tolerant computer system utilizing Triple Modular

Redundancy (TMR). Due to the radiation environment in space, electronics in space applications must be designed to
accommodate single event phenomena. While radiation hardened processors are available, they offer lower performance and higher
cost than commercial off the shelf processors. In order to utilize non-hardened devices, a fault tolerance scheme such as TMR may
be implemented to increase reliability in a radiation environment. The design that was completed in this effort is one such
implementation.

The completion of the hardware design consisted of programming logic devices, implementing hardware design
corrections, and the design of an overall system controller. The testing effort included basic power and ground verification checks
to programming, executing, and evaluating programs in read only memory. During this phase, additional design changes were
implemented to correct design flaws.

This thesis also evaluated the preliminary design changes required for a space implementation of this TMR design. This
included design changes due to size, power, and weight restrictions. Additionally, a detailed analysis of component survivability
was performed based on past radiation testing.

14. SUBJECT TERMS
Fault Tolerant Computing, Triple Modular Redundancy (TMR), Commercial-Off-The-Shelf (COTS) Devices,
Single Event Upsets (SEU)

15. NUMBER OF
PAGES

180

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI- CATION
OF ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

COMPLETION AND TESTING OF A TMR COMPUTING TESTBED AND
RECOMMENDATIONS FOR A FLIGHT-READY FOLLOW-ON DESIGN

Damen O. Hofheinz
Lieutenant, United States Navy

B.S., Texas A&M University, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2000

Author: "^Ww.^

Approved by: cUM^^. O. i*L+~4A.

Herschel H. Loomis, Thesis Co-Advisor

JeffreyB. Knorr, Chairman
Department of Electrical and Computer Engineering

in

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

This thesis focuses on the completion and hardware testing of a fault tolerant

computer system utilizing Triple Modular Redundancy (TMR). Due to the radiation

environment in space, electronics in space applications must be designed to accommodate

single event phenomena. While radiation hardened processors are available, they offer

lower performance and higher cost than commercial off the shelf processors. In order to

utilize non-hardened devices, a fault tolerance scheme such as TMR may be implemented

to increase reliability in a radiation environment. The design that was completed in this

effort is one such implementation.

The completion of the hardware design consisted of programming logic devices,

implementing hardware design corrections, and the design of an overall system controller.

The testing effort included basic power and ground verification checks to programming,

executing, and evaluating programs in read only memory. During this phase, additional

design changes were implemented to correct design flaws.

This thesis also evaluated the preliminary design changes required for a space

implementation of this TMR design. This included design changes due to size, power,

and weight restrictions. Additionally, a detailed analysis of component survivability was

performed based on past radiation testing.

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. THE SPACE ENVIRONMENT 2

1. Radiation 3
B. SINGLE EVENT PHENOMENA (SEP) 4

1. Single Event Upset (SEU) 5
2. Single Event Latchup (SEL) 5
3. Single Event Burnout (SEB) 6

C. COMMERCIAL-OFF-THE-SHELF VS. RADIATION HARDENED
DEVICES 6
1. Forward-looking Technology 7
2. Faster Design-to-Orbit Time 7
3. Reduced Cost 8

D. PURPOSE 8
E. THESIS ORGANIZATION 9

II. BACKGROUND 11
A. FAULT TOLERANCE 11

1. Time Redundancy 13
2. Software Redundancy 13
3. Passive Redundancy 14
4. Hardware Redundancy 14

a) Triple Modular Redundancy (TMR) 15
B. TMR MICROPROCESSOR DESIGN 16

1. Hardware Design and Operation 17
2. Fault Detection 18

C. DESIGN IMPLEMENTATION 19
1. Design Hardware Changes 20
2. Final Design 20

III. PROGRAMMABLE LOGIC DESIGN AND TESTING 23
A. PLD PROGRAMMING 24

1. Memory Controller PLD 25
2. Memory Enable PLD 25

B. PLD TESTING 25
C. FPGA PROGRAMMING 26

IV. DESIGN OF THE SYSTEM CONTROLLER FPGA 29
A. CUART STATE INIT MACHINE 30

1. State Machine Functionality 30
B. VOTE MACHINE 33

1. Voter Interrupt routine 34

vii

a) INTRCNTR 35
2. UART Interrupt Routine 36
3. State Machine Design Constraint 37

C. CONTROL MODE STATE MACHINE 37
1. Mode Initialization 38

D. FIFO DATA COLLECTION STATE MACHINE 40
1. Data Collection 40

E. TRANSFER STATE MACHINE 41
1. XFER State Machine 42
2. CPU State Machine 43
3. FIFOXFER Engine State Machine 45
4. BYTE Transfer Machine 49

V. DESIGN COMPLETION 53
A. WHITE WIRES 53
B. VOLTAGE REGULATOR 53

1. Voltage Regulator 55
2. 3-VoltBus 55

VI. SYSTEM TESTING 59
A. INITIAL CHECKS 59

1. Power Ground Testing 59
2. Clock signal testing 60
3. Reset Signal 61

B. SYSTEM LEVEL TESTING 61
1. Processor Initialization 62

a) Status Register 64
b) The Cause Register 65
c) Functional Testing 65

C. TEST DATA AND WAVEFORMS 66
1. ROM Read 67
2. RAM Write 70
3. UART DATA 73
4. UART INPUT/OUTPUT 76

VII. CONVERSION TO SPACE FLIGHT BOARD 79
A. CONSTRAINTS AND TRADEOFFS 79

1. Power 79
2. Size 80
3. Vibration Analysis 82

B. SPACE FLIGHT PREPERATION 83
1. Mission Parameters 83
2. Radiation Risk Assessment 84
3. Mission Specific 86

a) Microprocessor 87
b) XILINX FPGA 88

viii

c) Memory 89
d) Serial EEPROM 91
e) FIFO 91
f) Assorted. 92

C. PART SELECTION 92

VIII. CONCLUSIONS AND FOLLOW-ON RESEARCH 95
A. CONCLUSIONS . 95
B. FOLLOW-ON RESEARCH 95

1. Completion of TMR Implementation 96
2. Radiation Testing 96

APPENDIX A UPDATED TMR PLD FILES 97

APPENDIX B TMR SYSTEM CONTROLLER FILES 103

APPENDIX C PROGRAM FILES 131

APPENDIX D PART SELECTION 145

LIST OF REFERENCES 149

BIBLIOGRAPHY 151

INITIAL DISTRIBUTION LIST 153

IX

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF FIGURES

Figure 2.1. Strategies in Designing a Reliable System. From Ref. [9] 12
Figure 2.2. Basic TMR Circuit Implementation. From Ref. [1] 16
Figure 2.5. TMRR3081 Block Diagram. After Ref. [2] 21
Figure 3.1. Programmable Logic Device Identifier. After Ref. [2] 23
Figure 4.1. State Machine Hierarchy 30
Figure 4.2. UARTC State Machine 33
Figure 4.3. VOTE State Machine 36
Figure 4.4. MODECNTRL State Machine 39
Figure 4.5. COLLECT State Machine 41
Figure 4.6. XFER State Machine 43
Figure 4.7. CHDR Format 44
Figure 4.8. CPU State Machine 45
Figure 4.9. FIFOCTRL Word 46
Figure 4.10. FIFOXFER State Machine 48
Figure 4.11. BYTE Transfer State Machine 50
Figure 5.1. MAXIM Voltage Regulator 57
Figure 6.1. Status Register Format. From Ref. [12] 64
Figure 6.2. Cause Register Format. From Ref. [12] 65
Figure 6.3. ROM Data Waveform 70
Figure 6.4. RAM Data Waveform 73
Figure 6.5. UART Data Waveform 75
Figure 7.1. Space Design Layout 82
Figure 7.2. Differential Flux of various elements vs. Kinetic Energy at the

external surface of the spacecraft Z=l (protons) Z=8 (Oxygen) 86
Figure A.l MEMCONT PLD 102
Figure A.2 MEMENABLE PLD 102

xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xll

LIST OF TABLES

Table 4.1. UART Control Register. From Ref. [12] 32
Table 6.I.A. ROM Data List 68
Table 6.I.B. ROM Data List 69
Table 6.1.C ROM Data List 69
Table 6.2.A. RAM Data List 71
Table 6.2.B. RAM Data List 72
Table 6.2.C. RAM Data List 72
Table 6.3.A. UART Data List 74
Table 6.3.B. UART Data List 74
Table 6.3.C. UART Data List 75
Table 6.3.D. UART Data List 75
Table 6.4.A. UART Receive Data 77
Table 6.4.B. UART Receive Data 77
Table 6.4.C. UART Receive Data 77
Table 6.5.A. UART Transmit Data 78
Table 6.5.B. UART Transmit Data 78
Table 6.5.C. UART Transmit Data 78
Table B.l.TMR Files 103
Table D.I. Radiation hardened Device List 146
Table D.2. COTS Device List 147

xm

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

EXECUTIVE SUMMARY

Increased demands on satellite performance and a declining budget have forced

engineers to search for cheaper and faster products. Past satellite designs were restricted

to the utilization of radiation-hardened devices, today though the use of Commercial off

the Shelf (COTS) devices is increasing. In order to utilize COTS devices in space

though, the engineer must employ a method of increasing the reliability and redundancy

of a system such as Triple Modular Redundancy.

A Triple Modular Redundancy design was previously fabricated to prove the

implementation of this concept. The objectives of this research are the completion of the

design and verification of proper operation. The research began with the completion and

testing of the design files previously written for the programmable logic devices utilizing

WTNCUPL and Xilinx design software. During this phase, a design file for a PLD was

modified to correct for an error. These design files were ultimately burned into the

programmable logic devices.

The last step in completing the TMR board was the design and programming of

the system controller FPGA. This FPGA is responsible for data input and output, board

setup, and FIFO data collection. This design was accomplished utilizing the Xilinx

foundation HDL and state machine tool.

With the completion of the programming and design phases, a thorough review of

the design revealed a problem with the Field Programmable Array devices. The devices

utilized in the design required 3.3 Voltage, while the board was designed with a 5V bus.

xv

The addition of a voltage regulator into the board to provide the necessary voltage for the

FPGAs was the final solution to this difficulty.

Upon completion of the system design corrections, initial testing of the design for

proper operation consisted of basic power and ground verification checks to executing

programs in read only memory. Numerous programs were written, compiled, linked, split

and burned into ROM. A digital logic analyzer was used to capture program execution to

verify proper read and write cycles to RAM and ROM. The captured data provided

waveforms and data lists, which confirmed correct timing. The next program transmitted

serial data from the 16550 UART to a PC. Initially difficulties in obtaining output led to

the discovery of an incorrect device. After obtaining the new device, the correct output

baud rate and data waveforms were present on the UART. The final design program

captured transmitted data from the PC, added 32, and transmitted this data to the PC.

This work also focused on the preliminary design changes necessary for space

implementation of the TMR design. This included design changes due to size, power,

and weight restrictions. It also included a detailed analysis of component survivability

based on past radiation testing.

The effort in this work completed the design and programming of the TMR logic

devices and microprocessors. The waveforms and captured data supported the design

implementation and predicted timing waveforms. The benefit of work on this design is

the utilization of higher speed COTS microprocessors in space applications and a testbed

for investigating software fault tolerant methods.

xvi

ACKNOWLEDGMENTS

The author would like to take this opportunity to thank all the people who

provided the support and assistance that made this work possible.

To Captain David Summers: Your expertise provided great insight to the

hardware/software interface requirements in this project. Additionally, your friendship

provided the nucleus of a team that I am proud to follow in the footprints of.

To David Rigmaiden and Jim Horning: Your expertise and knowledge was

appreciated in overcoming difficulties during the course of this project.

To Professor Alan Ross and Professor Herschel Loomis: Your guidance, patience

and tutelage were instrumental in the completion of this portion of the project.

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

XVlll

I. INTRODUCTION

Increasing the radiation tolerance of a spacecraft against the environment of space

is the most important aspect in making it more survivable. Since the end of the 1980s,

the Defense budget has seen a dramatic decrease in funding. This has in turn affected the

research and development of radiation hardened devices by the commercial sector.

Additionally, commercial companies such as Intel are reluctant to switch their foundries

from production of normal microelectronics devices to radiation-hardened devices as a

result of the loss in revenue. The result of this is a very limited availability of hardened

devices at a high cost. Spacecraft Engineers working with lower budgets are therefore

forced to look for alternative cheaper, faster and better performing methods of increasing

the survivability of the Spacecraft. One alternative is the use of commercial-off-the-shelf

(COTS) devices in place of radiation-hardened devices. COTS devices present spacecraft

engineers with shorter design-to-launch times, lower parts costs, orders of magnitude

better performance, and a wider range of available software than radiation hardened

(radhard) devices. The major drawback to utilizing COTS devices in designing a

spacecraft is their increased susceptibility to the effects of radiation, both total dose and

single event upsets (SEUs) and system design techniques to protect them from this

radiation such as increased shielding.

This thesis is a continuation of an ongoing multi-thesis project initiated by LT.

Payne [Ref. 1], Capt. David Summers [Ref. 2] and Capt. Kim Whitehouse and LT. Susan

Groening [Ref. 3]. It will present the concluding designs and testing of a fault tolerant

computer evaluation system including the design of the system controller. Additionally,

it will also present the necessary changes for a space flight ready design.

The system is designed to perform two functions. First, it can act as a software

testbed by enabling testing of fault tolerant software in the presence of radiation induced

SEUs in a test chamber. This allows testing of the software algorithms in the environment

they were designed to operate enabling detection and isolation of errors. Additionally, the

design can be used as a combination software and hardware fault tolerant computer

system. This is accomplished by utilizing the fault masking ability of the hardware with

fault tolerant software. Both of these concepts will be discussed further in the body of the

thesis.

A. THE SPACE ENVIRONMENT

As satellites become increasingly complex and versatile, the amount of electronic

equipment in them grows. Care has to be taken to protect this equipment from both

temporary and permanent damage from the environment. Designing equipment for space

requires that the designers know the working environment. Like any environment, space

dictates the characteristics of devices intended to operate there and imposes requirements

on any equipment that would function there. This environment poses a risk to all earth

orbiting satellites and missions to other planets in the form of electromagnetic radiation

from the sun: not only visible light, but the entire range from radio to gamma rays. In

addition, it is also filled with the corpuscular radiation of the sun, the solar wind. Some

of this is trapped within the earth's magnetic field forming the intense radiation of the

Van Allen Belts. [Ref. 1]

1. Radiation

Radiation is the movement of energy through space by propagation of waves or

particles. Most of the radiation in space near Earth comes from the sun, as fusion in the

sun shoots particles through space. Around the planet's magnetic field, these particles

become trapped or are deflected away from the planet. These particles pose a threat to the

equipment of a spacecraft and can cause damage or disruptions in microelectronic

devices. [Ref. 1]

These particles are either ions or photons. When an atom is hit by a fast-moving

particle, an electron can be torn off producing an ion. There are two types of ions: light

and heavy. The proton or light ion is the simplest positive ion and is a fundamental

particle with low mass. The heavy ion or alpha particle is produced from the Helium

atom. The helium atom contains two electrons, two protons, and neutrons. When the

electrons are stripped away, the atom is ionized to HE++, which is known as an alpha

particle. The classifications of ions as heavy or light is dependent on the atomic number

of the element. All ions starting with the element Helium are classified as heavy ion.

Unlike ions, photons have neither mass nor charge. X-rays are an example of photon

radiation. [Ref. 4]

Multiple sources in space produce these radioactive particles. The first and largest

source of radiation is the Sun, which produces solar flares and winds. Solar activity of

the sun varies over an 11-year solar cycle, producing a variable average of solar particles.

Though the solar activity is predictable on a macro scale, the sun still produces wide

variations in radiation intensity on a day-to-day, hour-to-hour basis.

A second radiation type is Galactic Cosmic Ray or GCR, which are particles that

reach near-earth from outside of the solar system. The cosmic ray consists of heavy ions

produced by such events as exploding stars.

The last and largest contributor to a spacecraft's total dose is from particles

trapped in the Earth's geomagnetic field, otherwise known as the Van Allen Belts. The

belts are a fixed hazard to spacecraft and are distributed nonuniformly within the

magnetosphere. Any satellite in orbit is subject to effects from the Van Allen Belts.

[Ref. 5]

With this in mind, two factors are calculated to assist in determining the

survivability of the spacecraft. The first is the total dosage, the total amount of radiation

the spacecraft will be exposed to during its lifetime. The second is the dose rate effect,

the amount of radiation the spacecraft is exposed to at a particular time. As the spacecraft

orbits, radiation passes through it possibly affecting the spacecraft subsystems. When this

radiation interacts with microelectronic devices, it can cause a malfunction known as a

Single Event Phenomena, or SEP. Single event phenomena consist of three different

effects, the single event upset (SEU), single-event latchup (SEL) and the single-event

burnout (SEB), which are discussed in detail in the following section. [Ref. 6]

B. SINGLE EVENT PHENOMENA (SEP)

SEPs occur when a high-energy particle passes through the microelectronic device

and deposits enough charge to cause a transistor to change state. In most cases, the

transistor only changes state long enough for the charge to be absorbed back into the

system and then resumes its original state. The transistor's state change can lead to

latchup in parasitic transistors, high current state in a power transistor, or can be latched

into a storage element. These three main types of SEP in Complimentary Metal Oxide

Semiconductors (CMOS) are discussed in the following sections. [Ref. 6]

1. Single Event Upset (SEU)

An SEU is an unpredicted change of state or "bit-flip" induced by an energetic

particle such as a proton passing through a device. In a spacecraft computer, for example,

a bit-flip could lead to a random change in critical data confusing the processor to the

point it crashes. In microprocessors, SEUs are typically grouped into one of two error

types: program run errors and data errors. Program run errors are errors that occur in the

control logic, program counter (PC), or any other register that determines the state of the

processor. Data errors are typically confined to the data registers and cache. These two

types of errors are not necessarily exclusive. A data error could occur in a register that is

later used as program address. When the microprocessor reads the address held in that

register it is in the wrong location and begins to execute incorrect code. [Ref. 6]

2. Single Event Latchup (SEL)

Integrated circuits are made by combining adjacent p-type and n-type regions into

transistors. By the nature of the process, parasitic transistors are formed along alternate

paths through the circuit. These parasitic transistors are biased off by the circuit design

under normal circumstances. Latchup occurs when a charge, such as that produced by a

particle, activates one of these parasitic transistors, which forms into a circuit with large

positive feedback. This creates a short circuit across the device, with two possible

outcomes. The first is the current drawn through the parasitic transistors generates more

heat than the device can dissipate and destroys it. If the device is able to dissipate the

heat, the large amount of current drawn through the parasitic transistors prevents the

circuit from working correctly, which is a non-destructive SEL. The normal symptom of

a non-destructive SEL is of a hung system, which requires the system power to be cycled

before proper operation is restored. [Ref. 6]

3. Single Event Burnout (SEB)

Single Event Burnout is another condition that can cause device destruction. It is

caused by a single ion, for example from a GCR, which induces a high current state in a

MOSFET destroying the circuit. [Ref. 6]

C. COMMERCIAL-OFF-THE-SHELF VS. RADIATION HARDENED
DEVICES

The radiation effects discussed in the previous sections, with the exception of

SEUs, are destructive in nature. The main way of reducing their effects is by utilizing

radiation hardened (radhard) devices or providing shielding. A radhard device is one that

is specifically designed to be able to withstand higher amounts of radiation than standard

commercial parts.

Determining the suitability of commercial-off-the-shelf (COTS) microprocessor

for space applications is a subject of ongoing research. There are multiple reasons for

utilizing a COTS product within such a harsh environment as space. This section will

present a few of the rationale leading to the use of COTS.

1. Forward-looking Technology

As touched upon earlier in the introduction, the United States radiation hardened

market is rapidly shrinking. The small percentage of the overall market that requires

radhard components puts severe economic constraints on the companies that produce

these devices. The number of companies developing and marketing radhard devices is

rapidly on the decline and the remaining companies are not developing new chip designs.

For these reasons, the development of radhard devices is lagging behind state of the art

technology by two or more generations. As an example, a spacecraft launched in space at

present would have at best the equivalent of a 486 66 MHz CPU radiation hardened

microprocessor compared to the standard home computer with a modern 700 MHz

Pentium HI processor. This entire order of magnitude difference in processor capability

makes the COTS processor especially appealing. [Ref. 7]

2. Faster Design-to-Orbit Time

Parts availability is crucial in maintaining a development schedule. The limited

availability of radhard devices offered by many manufacturers can lead to a delay in

production schedule. By utilizing COTS devices, the production flow is maintained. The

spacecraft engineer is given a wider selection of devices to utilize from multiple vendors.

Additionally, the utilization of COTS allows for parts interchangeability in case of

failure. This translates to less non-value-added time in the development schedule.

Numerous companies are conducting radiation testing on devices, creating a growing

database of devices suitable for space applications. [Refs. 7 and 8]

3. Reduced Cost

Low demand and little profit exist in the production of radhard devices, which has

led to many manufactures abandoning their production of radhard devices in favor of the

more lucrative, higher volume consumer electronics. The limited availability of these

devices then leads to an inflation of the cost. Part cost directly impacts the cost of the

product. In a time of shrinking budgets, the spacecraft engineer is looking for a cheaper

suitable product. The best alternative is the development of hardware and software fault

tolerant designs with non-radhard COTS. [Ref. 7]

D. PURPOSE

The goal of this research is the testing and implementation of a fault tolerant

computer system using COTS microprocessors that is capable of operating in the

presence of radiation induced SEUs. This thesis specifically concentrates on the

programming and initial testing of a design previously fabricated in the work reported in

Reference 2.

This design did not take into account total dose radiation, which is a factor that

usually limits the operational lifetime of spacecraft electronics. This factor is determined

by the electrical properties of solid-state components exposed to radiation over a period

of time. Ultimately the long exposure to radiation leads to changes in the component

parameters outside of design specifications and causes the circuit to cease proper

functioning. This factor is less stringent in the design because of spacecraft shielding,

component selection and survivability.

Successful completion of this project will lead to numerous benefits for the space

community. First, the adage of faster better cheaper can be utilized in the development of

spacecraft. The spacecraft engineer will have a broader choice of devices and software to

choose from at a reduced cost. The spacecraft design will no longer be restricted to the

use of radhard components.

Second, the fault tolerant system can be utilized as a testbed to analyze software

fault tolerant programs. The fault tolerance hardware is able to detect the SEU and log

the time and kind of an upset. The software can then be observed in the manner in which

it handles the error. This testbed will allow the testing of software in a simulated space

environment prior to use in orbit.

Last, the system can be utilized as a hybrid fault tolerant computer system. In this

configuration, the processor is additionally monitored for SEU. Upon detecting an upset,

the processor is restored to the state prior to the upset. The processor then continues

execution from the point prior to the upset with little downtime and no loss of data. This

is dramatically different from current operations where a processor is reset when an error

occurs, resulting in downtime, loss of data and spacecraft availability. As shown, this is a

major advance in the handling of spacecraft system failures.

E. THESIS ORGANIZATION

The organization of this thesis follows the design approach used in developing the

system. Chapter I has been a brief introduction of the environment in which the system

will be operating. Chapter II is background material on research that has led to the

foundation and fabrication of this design. Chapter HI contains the programming, testing,

and implementation of the programmable elements of the system. Chapter IV presents the

design and programming of the system controller. Chapter V presents the final steps in

design completion. Chapter VI presents the steps that were taken in testing the design

after manufacture. Chapter VII presents steps required to transition the current test bed

design to a flight ready design. Chapter VIE presents the conclusions developed during

this research and discusses topics for follow-on work.

10

II. BACKGROUND

Fault tolerance has been implemented in computers for many years. A digital

system, though very reliable, does not operate fault free. When a system experiences a

fault, it has to be detected and corrected. The technology of computer systems has

progressed at a rapid rate and many fault tolerance requirements have been dropped in

order to improve speed or performance. However, the Department of Defense requires

the use of fault tolerant designs in systems that perform critical tasks, such as the control

system of the F-l 17 stealth aircraft. A minor fault in the computer during flight would

mean disaster for the aircraft. This level of performance has maintained the practice of

fault tolerance methods at the forefront many of designs. [Ref. 8]

The purpose of this chapter is to provide the reader with a brief background of this

project. The chapter starts by outlining the general concept of fault tolerance and focuses

in on the design and implementation of this system.

A. FAULT TOLERANCE

There are two approaches to increase the survivability or reliability of electronics

in a spacecraft, which are radiation hardening and the use fault tolerance. Figure 2.1

provides a flow diagram for the design of a reliable system. The first method, radiation

hardening of devices, is simply constructing devices in such a way as to increase the total

dose survivability and reduce the possibility of an SEP. Four basic ways to harden a

device are with junction isolation, dielectric isolation, silicon-on-sapphire devices, and

silicon-on-insulator devices. This method would relate to the left-hand side path

11

designing a system with fault avoidance by utilizing parts with a high reliability. This

system design has increased radiation tolerance, but offers little or no redundancy.

The second method, fault tolerance, follows the right side of the figure and is

simply the ability of the spacecraft to functionally operate in the presence of a fault. Fault

tolerance is usually achieved by increasing the redundancy of onboard systems.

Reliability is determined by the design of the system, the parts utilized, and the operating

environment. One method of increasing reliability is by employing the worst-case design,

using high quality components, which in turn adds cost. An alternative method of

improving spacecraft reliability is to use a fault-tolerant design. Fault tolerance can be

accomplished in either software or hardware. This section will discuss the redundancy

methods that are relevant to this design, which are time, software, passive, and hardware

redundancy. [Refs. 9 and 10]

Nonredundant
systems

Fault
intolerance/avoidance

Redundant
systems

Fault-tolerant
systems

Error
detection

Masking
redundancy

Dynamic
redundancy

Figure 2.1. Strategies in Designing a Reliable System. From Ref. [9]

12

1. Time Redundancy

Time redundancy is one of the easiest methods to implement; it involves the

restoration of a system to the point immediately after experiencing a fault. This fault is

detected by placing checkpoints and with a timeout mechanism. If the system fails to

perform a task within a certain amount of time, a fault is detected: The restoration of the

system is accomplished by rollback of instructions, segments of programs or entire

programs to the last checkpoint. The problem with this method is that it can be time

consuming, which is determined by the size of the program and memory that is restored.

Additionally, there is a loss of information to the point that the system last saved data.

[Ref. 10]

An alternative method of time redundancy is the performance of a calculation

numerous times for accuracy. This requires the system to save the state before the

calculation, perform the calculation and save it, make a context switch back to the

beginning of the calculation, perform it again, and then compare the results of the two

different calculations. This results in a large computational drain on the system and two-

fold increase in calculation time. [Ref. 10]

2. Software Redundancy

No matter how capable the programmer, almost all software contains faults. A

way to achieve some level of protection from these faults is the implementation of a

software redundancy method. One such method is N-version programming, which is the

addition of software modules to provide checks. For example, five individual programs

13

are designed for the same function. They are all executed, and their outputs are voted

upon. Additional methods of software redundancy are consistency checks of the data

against known correct values and capability checks to ensure those functional programs

are operating correctly. [Ref. 10]

A subset of software redundancy is error-correcting codes. These codes can be

utilized to provide automatic fault detection. One of the best-known codes, the Hamming

single error correcting code, is used to increase reliability of information transmitted or

stored in memories. [Ref. 10]

3. Passive Redundancy

Passive redundancy employs multiple units, some of which are not continuously

operating and are command selectable. In this configuration, redundant items act in

response to a specific failure or anomaly. The detection of a fault is achieved by

conducting periodic tests, self-checking circuits, or watchdog timers. Passive redundancy

allows mission operations to continue in the presence of one or more failures. [Ref. 10]

4. Hardware Redundancy

The most widely accepted view of hardware redundancy is the addition of

components. Hardware redundancy can be broken into two subcategories: static and

dynamic. Static redundancy, also known as masking redundancy, is the addition of extra

component to mask out a fault near instantaneously. One of the major methods utilized to

accomplish this is Triple Modular Redundancy or TMR. Dynamic Redundancy is

implemented by monitoring the operation of the numerous devices for a fault. In this

14

system, only one module or device is operating at a time. If a fault is detected in this

operational device, it is switched and replaced by another device. [Ref. 10]

The design described in the following chapters of the paper and employed in this

system is Triple Modular Redundancy, a hardware redundancy technique. The TMR

concept is implemented by utilizing three identical modules that feed their output to a

voting unit. This voting unit then compares the outputs and passes the majority vote to

the output, essentially masking out any single fault.

a) Triple Modular Redundancy (TMR)

As stated before, TMR is implemented by the replication of the devices

and performing a majority vote to determine the output of the system. For example, if

Module A becomes faulty, the two remaining module's outputs mask the fault when the

majority vote is performed. The inputs and outputs of a module do not have to be single

bytes. A word can be inputted into a module to produce a word output. This word has to

then be inputted into parallel voting units to vote. The basic concept of the TMR circuit

is shown below in Figure 2.1

The concept of TMR can be expanded to include multiple voting modules

to produce an N-modular redundant system. As N gets larger, the logic required to

realize the circuit and the added levels of delay get excessive. The typical range for N is

from three to five. [Ref. 10]

15

Input 1

Input 2

Input 3
 ►

ModC

Figure 2.2. Basic TMR Circuit Implementation. From Ref. [1]

The TMR system does have drawbacks, the primary being that the voter is

a single point of failure. If the voter fails for some reason, the system will crash or

propagate errors. A method to prevent this problem is the use of triplicated voters. [Ref.

10]

B. TMR MICROPROCESSOR DESIGN

The framework for the system in this design was first developed and simulated

using Verilog by Lieutenant John C. Payne, Jr., USN, as a Fault Tolerant Computing

Testbed [Ref. 1]. Following this Captain David Summers, USMC implemented and

fabricated the design [Ref. 2]. The remainder of this section is a brief synopsis of the

TMR Testbed Design.

16

1. Hardware Design and Operation

The first step in the design process was the integration of the system components.

As stated previously, TMR is implemented by on the replication of three modules. This

design was first focused on the 3081 as a single system and then triplicated. Figure 2.3

demonstrates the implementation of this concept. The TMR implementation has

relatively few changes from the single processor design. The major additions to the

design were the data, address, and control voter components.

As shown in Figure 2.3, the three system processors are connected in parallel.

The system acts as if only one processor is present in the system. The processors perform

functions in a lock step manner from initial boot up by executing the same instructions.

The processors then route address, data, and control information through busses to their

respective voters. The voters perform a majority vote on the signals and pass them on to

the Memory Space and Memory Controller as in a single processor system. If an error is

detected in a voter, the Memory Controller generates an interrupt.

17

EPROM

Figure 2.3. TMR R3081 Board Design. From Ref. [1]

2. Fault Detection

Though the voters mask out the fault generated in the data going to memory, the

problem remains of detecting which processor was at fault and where. In order to

accomplish this, the internal registers of each processor have to be stored and examined.

The information (address, data, and control) is captured prior to being voted by placing

First-In-First-Out (FIFO) Registers on the address, control, and data busses between the

processors and voters. If an error is detected, by any of the voters, the current bus cycle

completes and an interrupt is generated. The processors are then restored to the state

prior to the fault and resume operation. The arrangement is shown below in Figure 2.4.

18

This design protects only the processor operation and the processor output. The

reliability of the data stored in the memory is not improved. This issue is discussed in

Chapter VI as a part of the required preparations for a space flight design.

Address

FIFO Write
Enable

& Buffer Select
Lines

From
Memory

Controller

Figure 2.4. TMR FIFO Interface. From Ref. [2]

C. DESIGN IMPLEMENTATION

Lt. Payne's design and simulations were the framework for the concept of the

TMR system. His design product was software verification in Verilog of this

implementation of TMR. The thesis presented by Capt. David Summers [Ref. 2]

describes the implementation of the TMR design in hardware and the required changes.

The following sections will provide a brief overview of these design changes and further

information regarding them can be found in Reference 9.

19

1. Design Hardware Changes

The process in the design of any system is driven by many factors including part

availability and compatibly. Capt. Summers was required to implement design changes

in order to provide a working board for future test and space applications. The three

major changes implemented were the addition of a system controller FPGA and I/O

interface ports. The system controller FPGA was added to replace some of the

functionality provided by the computer in the Verilog design. The I/O interface was

added to provide a method to upload programs and control the board during testing. The

design and implementation of the system controller FPGA is covered in this thesis.

Additional support elements such as oscillators, buffers, and a reset circuit were also

added to the design. These design changes are highlighted and shown in Figure 2.5.

2. Final Design

The design and manufacture of the TMR board were completed by Capt.

Summers, but he was unable to complete the programming, test, and verification of the

design. This thesis continues the preparation of the board for eventual cyclotron testing

and spacebased applications. This author began work on the TMR design with Capt.

Summers on the design of the PLDs, FPGAs programs and the detailed timing analysis.

This joint effort was presented in Capt. Summer's thesis as Chapter TV. Chapter III

presents the continuation of this initial effort with the programming and testing of the

Programmable Logic Devices (PLD).

20

Control
Interface

Control VO

Ö § u u

o

R3081
CPU A

oa ■

'O

R3081
CPUB

'o

R3081
CPUC

Address
Latch

Address
Busses

Address
Latch

Data
Busses

Address
Latch

Control
Busses

la
>

o »
U o
13 >

Voted
AHHr

Bus
Memory

Voted
Data
Bus

Voted
Control

Bus

O

C3

Memory
and Error
Controller

Data
Interface

Figure 2.5. TMR R3081 Block Diagram. After Ref. [2]

21

THIS PAGE INTENTIONALLY LEFT BLANK

22

III. PROGRAMMABLE LOGIC DESIGN AND TESTING

Designers are continuously challenged to add more logic to system while using the

same amount of board space. In order to incorporate this in the TMR design, the Memory

Controller and Memory Enable functions were implemented in Programmable Logic

Devices (PLDs), and Field Programmable gates arrays (FPGAs) were used to implement

the data, control, and address voting logic. The programmable logic components of the

design are identified as shaded blocks in Figure 3.1.

Control
Interface

Control I/O
R3081
CPU A

R3081
CPUB

R3081
CPUC

Address
Latch

Address
Busses

Address
Latch

Data
Busses

Address
Latch

Control
Busses

ID

>

& Q

Voted
Addr
Bus

Voted

Bus

Voted
Control

Memory

Bus m

o
1-4

as

Memory
and Error
Controller i

Data
Interface

Figure 3.1. Programmable Logic Device Identifier. After Ref. [2]

23

A. PLD PROGRAMMING

The final system design shown in Figure 3.1 utilized four user-defined modules,

which are the address/voter demux, data/control voter, system controller and the memory

and error controller. The first three modules were implemented utilizing Xilinx FPGAs

are discussed in later sections. The memory and error controller modules were

implemented in the TMR design utilizing two Atmel ATF22V10C-7PC PLDs. Detailed

information regarding device selection and program logic is found in Reference 2 Chapter

rv. This chapter will describe the steps taken in the programming and testing of these

devices.

The software program utilized to construct files for download to the PLD is a

program called WinCUPL, which is a Windows version of Universal Compiler for

Programmable Logic (CUPL). CUPL is a HDL (Hardware Description Language)

comparable to ABEL used to program logic devices. The input to WinCUPL is a user

created Programmable Logic Device (PLD) file and the output is a standard JEDEC file

used to program the device. After compiling, the JEDEC file is downloaded to a

programming unit to program the device fuses. The program device utilized in the design

of this system is the ALLPRO 96 256 Pin programming system by Logical Devices, Inc.

After the file is downloaded, it is programmed into the device and the logic output of

device is compared against test vectors. The following sections give a brief synopsis of

the purpose of the devices and the testing and verification procedures.

24

1. Memory Controller PLD

The main function of the memory controller is to provide all of the signals

necessary for memory access during bus cycles. The memory controller inputs consist of

the chip select signal for all peripheral devices such as RAM, ROM, timer, UART, and

voter interrupt. Additionally, the voted signal such as read, write, data, address, and

control vote errors are inputted to the memory controller. These inputs are utilized to

generate the vote interrupt, read/write cycle enable, acknowledge, bus error, and cycle end

signals. Appendix A gives a detailed pin out of the Memory Controller PLD.

2. Memory Enable PLD

The Memory Enable PLD assists the Memory Control PLD during bus

transactions. It accomplishes this by producing the read and write enable strobes for the

memory system, read and write data enable signals to control the drivers on chips

between the busses, and a positive and negative logic synchronous reset. Inputs to the

PLD consist of the voted read/write and voted byte enable signal. Utilizing these inputs,

the PLD outputs the write and read enable signals for the peripheral devices.

B. PLD TESTING

Test vectors allow the designer to verify, test and debug a PLD design for proper

functionality before it is used in the system. Though the test vectors can pass when tested

on the CUPL functional simulation, the same vectors may fail when tested on the PLD

programmer. This is the case with the memory controller PLD that had two vectors fail.

Two reasons that this could occur are improper test vector usage and a result of the

programmer's hardware characteristics. The programming hardware dictates the

25

sequence in which inputs in a given vector are applied to the device. Analysis of device

output and logic equations is the only manner by which to analyze and correct this.

Analysis of the device output led to the conclusion that the PLD was unable to latch the

counter causing the vector failures. The PLD program file was modified to correct this

error and passed both the simulation and programmer tests. The impact of the change to

the PLD functionality is that the bus error and cycle end signal will assert on one clock

earlier. This is no manner affects the function of the TMR system. After completing the

program changes, the file was compiled and downloaded into the programmer.

Programming of the PLD passed all test vectors successfully. An updated design file is

given in Appendix A.

C. FPGA PROGRAMMING

The field programmable device chosen for this system is the Xilinx XL4013XLA.

These devices are utilized to implement address voter\demux, data\control voter, and the

system controller shown in Figure 3.1. Reference 2 Chapter rV gives a detailed

discussion on the selection of this device and the design of the programs. The software

used to develop the program for the devices was Xilinx Foundation Software. The FPGA

design is a 3-step process that consists of the following stages. First, design entry, in this

stage of the design flow the design is created either in schematic editor or hardware

descriptor language (HDL). Second, design implementation by mapping the file to a

specific Xilinx architecture, and placing and routing the design, the design file created in

the first step is mapped into a physical file format. The physical information contained in

this file is then used to create a bit stream file for programming in a programmable

26

device. The final stage of the process is completed when the bit stream file is formatted

by a PROM formatter into a configuration file for the FPGA device that can be stored in a

PROM. This is accomplished by converting the BIT file into one of four PROM formats:

MCS-86 (Intel), EXORMAX (Motorola), TEKHEX (Tektronix) or straight HEX format.

In a joint effort with Capt. Summers, the first two steps of this process were

executed. [Ref. 2] While executing the third step, it was discovered that the PROM code

formatter in this software is targeted for Xilinx parts and the Serial EEPROM utilized in

this design was an ATMEL AT17C512. Further research into the impact of utilizing this

file in the device was conducted by contacting Xilinx and Atmel. After numerous

conversations with the two companies, it was concluded that the Xilinx software program

uses the device selection in determining the allowable size of the prom file only.

Therefore, the difference in device was acceptable and would have no impact.

Completing the process the file was formatted into MCS-86 and TEKHEX, then

downloaded to the ALLPRO 96 programmer for programming into the Serial EEPROM.

In order to accomplish programming of a device, the ALLRPO has to first

recognize the device type. The device programmer was unable to recognize the ATMEL

devices for programming and thus unable to program the serial PROM. Research into

possible causes for this failure led to a notice on the ATMEL website [Ref. 11]. This

notice stated that some ATMEL serial EEPROMs failed to accept device encoding during

manufacture and listed steps to overcome this failure. The instructions detailed methods

of switching off the programmers' device recognition function. After completing the

procedure detailed in the notice, the device programmer was still unable to program the

27

device. An ATMEL FPGA engineer, who assisted with the information for the

programmer was aware of the difficulties experienced in programming the devices and

offered assistance with programming the devices. The devices were returned after

programming for installation in the system. Verification of successful programming is

only indicated by the programmer's comparison of the contents of the programmer

memory to the device contents.

The programming of the Memory Controller PLDs and the Voter FPGAs allow

the system to function as a stand-alone computer system able to detect and correct single

bit errors occurring in any of the processors. The design of the system controller FPGA

though mentioned in the start of this chapter was not discussed. The design and

programming of this programmable device completes the TMR design and is discussed in

detail in following chapter.

28

IV. DESIGN OF THE SYSTEM CONTROLLER FPGA

As stated earlier, programmable logic offers flexibility to the system designer and

is essential to performing controlling functions in the TMR 3081 design. The Data Voter

and Control voter were previously implemented and programmed using the schematic

editor in the Xilinx software. The System controller FPGA presents a more difficult

design problem because the logic implemented by this controller cannot easily be

modeled as a combinatorial design. Therefore, it was decided to use Xilinx Foundation

HDL editor and State Machine tool to design the controller. The system controller

performs numerous functions in the TMR system. It initializes the Control UART,

enables the interrupts for the 3081 microprocessor after resets, transfers and collects FIFO

data, and defines the mode in which the TMR system functions. In examining all of these

tasks, there are three distinct possibilities of data flow. These are:

• The FPGA outputs data to the UART
• The FPGA enables the FIFO to output data to the UART
• The FPGA accepts input from the UART

Each of these events is mutually exclusive: that is, no two events can ever occur at

the same instant in time. It is the function of the system controller to define, which one of

these events listed above is presently in progress. The detailed subsystem programs of

the system controller FPGA are listed in Appendix B. The following sections discuss the

state machines for each subsystem of the system controller FPGA. Figure 4.1 provides an

overview of the flow of the state machines discussed in the following sections.

29

CUARTINIT

VOTMACH

CNTRLMODE COLLECT TRANSFER

XFER

CPU

FIFOXFER BYTE

Figure 4.1. State Machine Hierarchy

A. CUART STATE INIT MACHINE

The Control UART Initialization state machine is the uppermost in the state

machine hierarchy. It automatically initializes the UART to the proper mode of operation

when the system controller FPGA is powered on or reset. The following sections present

the operation of the UARTINT state machine.

1. State Machine Functionality

The CUARTIN state machine initializes the control UART to communicate with

the HCI. This is accomplished by a sequence of UART register writes. The first register

initialized by this sequence is the FIFO control register, which is a write only register.

30

The register enables the FIFO by asserting the first bit. The next register in the sequence

is the Line control register. The line control register controls the format of the data

communication. The first two bit in the register are set to '11' setting the serial character

word length to 8 bits. The last six bits in the register set the parity and number of stop

bits. The Human Control Interface design by Capt. Kim Whitehouse and LT. Susan

Groening [Ref. 3] currently has no parameters set for these modes. The default

initialization sequence therefore sets the modes for no parity and one stop bit. The

Modem control register is next in the sequence and controls an interface with a modem.

The assertion of the first two bits and the sixth bit in the register enable the autoflow

control mode of the UART. The final registers in the setup sequence are the Divisor

Latch (LSB) and Divisor Latch (MSB). These registers are utilized to control the

programmable baud generator for the UART. The divisor written into the registers is 72.

This divisor sets the baud rate of the UART to 9600. The final state of the UART

initialization sequence disable the data lines and deasserts the chip select line.

Completion of UART setup enables communication with the HCI and allows the state

machine to proceed to the next state machine, VOTE.

The CUARTINT state machine initiates in state SO and immediately transitions to

the next state, SI. The state machine shown in Figure 3.1 contains no conditions for

transitioning from state to state. Therefore, once the state machine is initialized it does

not depend on any outside input for completion of the control UART initialization

process. Continuing in state SI, the FSM asserts UART Enable (UARTEN) and Control

UART Chip Select (CUARTCSN). The assertion of these signals enables the UART to

31

drive the bi-directional bus and read status information from a register. In the next state,

S2, the FSM first asserts the Control Address bus (CTRLADDR) with the register

selection address. The UART has twelve internal registers, only, six of which are utilized

during the initialization process discussed in this section. The table below details the

register selection dependent on the address placed on the CTRLADDR bus.

DLABt A2 A1 AO REGISTER
0 L L L Receiver buffer (read), transmitter holding register (write)

0 L L H interrupt enable register

X L H L interrupt identification register (read only)

X L H L FIFO control register (write)

X L H H Une control register

X H L L Modem control register

X H L H Line status register

X H H L Modem status register

X H H H Scratch register

1 L L L Divisor latch (LSB)

1 L L H Divisor latch (MSB)

Table 4.1. UART Control Register. From Ref. [12]

In addition to asserting the control address, state S2 places the setup data on the

Control Data UART (CTRLDATU) bus that is tied to the bi-directional Control Data

(CTRLDATA) bus. This data is written into the selected register and latched in by state

S2b with the assertion of the Control UART Write (CUWREN). The next state S3

deasserts CUWREN, which enables the next state, S4, to change the address and data

lines without effecting the UART. This process is repeated to setup remaining registers.

CUWREN=1;
<~UARTCSN=0;
UÄRTEN=0;

CTRLADDR=3'b010;
CTRLDATAU=8"b10000000;

-/-

CTRLADDR=3'b100;
TRLDAT AU=8'b11000100;

CTRLÄDDR=3*b011;
CTRL0ATAU=8'b11000001;

Figure 4.2. UARTC State Machine

B. VOTE MACHINE

The vote state machine is the primary state machine of the system controller

FPGA. This state machine has two primary purposes. The first is to detect a voter

interrupt from the microprocessor and start the collect/transfer state machines. The

second is to detect a Control UART Interrupt (CUARTINT) assertion from the HCI. The

33

State machine is broken into three functions to ensure control over what state machine is

driving the data bus. The following sections discuss the operation of this state machine

based on these two functions.

1. Voter Interrupt routine

The main function of the system controller FPGA is to monitor the TMR board

for a vote interrupt to collect and transfer the data. This important function is

implemented and started with the voter interrupt routine. This state machine detects a

voter interrupt and increments an interrupt counter. The incrementing of this interrupt

counter is a signal to the collect and transfer state machines to begin the process of

collecting the data from the FIFOs and transferring the data to the UART.

The state machine waits in state SI and monitors the Interrupt Chip Select

(INTCSN) signal for indication of a voter interrupt. When, the INTCSN signal is

asserted, the state machine transitions to state S2. The state machine then waits for the

deassertion of this signal indicating that a voter interrupt has been serviced. The state

machine then transitions back to state S1 incrementing the Interrupt Counter (INTRCNT)

register, which starts the Transfer state machine discussed in a later section.

The state machine resides in this state until assertion of the CPUDONE signal by

the Transfer state machine. Assertion of this signal indicates that the Transfer state

machine has completed the transfer of the CPUs FIFO array contents to the HCI. The

state machine transitions to state S3 decrements the interrupt counter and then transitions

back to state SI awaiting another interrupt signal. This completes the detection and start

of the interrupt service routine.

34

a) INTRCNTR

The interrupt counter register is implemented in the design to enable the

system to contend with numerous consecutive interrupts. The processors will have

dumped and restored their internal registers before the system controller FPGA is finished

transferring the FIFO data. The state machine controls this by incrementing for each

transition of INTCSN signifying to the state machine that an additional interrupt has been

serviced. This in turn will ensure seamless operation of the Transfer state machine during

multiple interrupts. Additionally, it is important to note that INTRCNTR is a 4-bit

register and therefore the maximum number of interrupts counted by this machine is 32.

Since the collect and transfer sequences for the FIFO are occurring simultaneously, only

an extreme error condition producing consecutive voter interrupts would lead the state

machine exceeding this design limit.

35

S4«

UARTINT=1;

iCUARTim j\

CUARTINT && UNTRCNT

S3 \ y ■ '^w" , / S2 \
/2/ L* GPäÜÜNE !1NTRCNT=1NTRCNT+1 }-\ ftf I

!NTRCNT=!NTRCNT-1;

Figure 4.3. VOTE State Machine

2. UART Interrupt Routine

Since the vote state machine is the highest in the hierarchy, it was necessary to

implement the detection of a request from the HCI to input data to the system controller

FPGA here. The HCI inputs data through the UART to the system controller to

implement three functions, which are a board level reset, a system level reset, or to set the

mode of operation of the board to one or three processors. The system controller detects

this request for input and starts the CONTROL MODE state machine.

An alternate transition path from state S1 to state S4 is caused by the assertion of

the Control UART Interrupt (CUARTINT) signal with the INTRCNT register equal to

zero. The CUARTINT signal originates from the UART and is asserted by the HCI

36

placing data in the UART. Transitioning to state S4 causes the assertion of the

UARTFNT signal that starts the CONTROL MODE state machine. This state machine is

discussed in the following section.

3. State Machine Design Constraint

An important factor in this state machine design is the imposed constraint that a

transition to state S4 from state SI is inhibited during a voter interrupt Service. This was

accomplished by the ANDing of the signal CUARTINT and !INTCNTR. This constraint

was placed on the design to protect against switching the mode of operation during an

interrupt handling routine. An example of this is switching from TMR processor mode to

one processor mode during a voter interrupt service. If the processors are currently

dumping their registers to the FIFO, the transfer process is asserting and deasserting the

CTRLDATA bus. A switch in mode would require that the Read Machine drive the

CTRLDATA bus breaking the current FIFO data dump. Therefore, it was decided to

block this function from occurring until completion of the service routine.

This basic principle is also implemented in the design of the HCI. During a voter

interrupt routine, the HCI is receiving FIFO data and the user is unable to halt the process.

The next section discusses the operation of the Control Mode state machine, which the

HCI utilizes to setup the TMR system.

C. CONTROL MODE STATE MACHINE

The vote state machine initiates the control mode state machine. This state

machine reads in the control word from the UART inputted by the HCI. The state

machine next utilizes the control word by checking what bits are set to decide which of

37

the three functions previously mentioned to perform. This operation of this state machine

flow is discussed in the following sections.

1. Mode Initialization

This FSM initializes in state SI and transitions to state S2 upon assertion of the

UARTINT signal by the VOTE state machine discussed previously. State S2 asserts the

signals FORCE, mode enable (MODEEN), and CUARTCSN setting the default mode of

the TMR design to single processor and enabling the FSM to drive the bi-directional

CTRLDATA bus for input. The selection of the default mode of the design to single

processor mode is to allow the user to setup the system design and conduct initial tests

before transitioning to the TMR mode. This selection can be changed in future designs.

The assertion of the final signal CUARTCSN indicates to the UART to activate the

asynchronous communications element for data transfer. The FSM next transitions to

state S3, asserting the CTRLADDR bus with '000' selecting the holding register (write)

of the UART. A transition to state S4 asserts the chip select signal, CUARTADSN,

which allows the selection of the control register in the UART. The state machine next

transitions to state S5, asserting Control UART Write Enable (CUWREN) and writing the

control word onto the data lines. Next, state S6 reads in the data on the input bus AIN

tied to the CTRLDATA bus and places the contents into a temporary register MDCTRL.

The FSM transitions to state S7 deasserting CUWRENN, CUARTCSN, and MODEEN

allowing the other state machines to drive the bi-directional data bus CTRLDATA. State

S7 has three possible transition paths that are dependent upon the data in MDCTRL

register. The transition paths each contain an 'IF' conditional that checks a bit in the

38

control word which in turn selects the transition path. State SIO causes a change in design

mode from single to TMR processor mode. State S8 and S9 are responsible for a board

and system reset. The Control Mode state machine is shown in figures 4.4 and the

control mode word is given in Appendix B.

-a h^

yfamNr
ty

k^|eTRLADDR[2:0]=3'BD10;
/ JJV
{S3 V

SI.
Xtf)

CUARTCSN=1;
IN01;
FORCE=0;
SYSRST=0;
BRDRST=0;

cAfer
/ S4 N

CUARTADSN=1;

Mf:

^-—«-TJ

& CUR
/-TSV

/ S8 N-

;URDENN=1;

T" *-_ BRDRST=1;
N—-'

CURDENNO;
CUARTCSN=0;
NOD:

Figure 4.4. MODECNTRL State Machine

39

D. FIFO DATA COLLECTION STATE MACHINE

The FIFO data collection state machine as the name implies collects the FIFO

array data. The assertion of a voter interrupt signal causes the state machine to assert the

read enable of the FIFO arrays. A counter increments to 82 ensuring the FIFOs read in

the 41 registers data and address saved by the processor. These 32 bits of information

are split between four 8-bit FIFOs. The details of this functional state machine are given

in the following section.

1. Data Collection

The FIFO data collection state machine resides in state SO until the assertion of

the Voter Interrupt (VOTINT) signal. This signal, asserted by the microprocessor,

indicates that a voter interrupt is being serviced and it will remain asserted until the

processors have completed the transfer of their registers to memory. Transitioning to

state S2, the FSM asserts the first bit on all the FEFOCTRL bus lines. Each FIFO array

has a corresponding control line designated as FDFOCTRLA, B, and C. This first line is

tied to the Read Enable (RE) pin on the FIFO allowing it to read in data. The FSM next

transitions to state S3 which increments the Collect Counter register, COLCNT. This

register will increment up to 82 before allowing the machine to transition to state four.

After counting up to 82, the state machine transitions to sate S4 and then to state

SI resetting the collect count. Keep in mind while this is occurring, the transfer state

machine discussed in the following section is already transferring FIFO data with the

incrementing of the interrupt counter, INTRCNT register by the VOTE FSM.

40

F!FOCTRLA=0;
FIFOCTRLB=0;
F!FOCTRLC=0;

CQLCMT==3'b10iQ01QQ FIF0CTRLA=1;
FIF0CTRLB=1;
FIF0CTLRC=1;
COLCNT=0;

Figure 4.5. COLLECT State Machine

E. TRANSFER STATE MACHINE

The Transfer state machine is the largest state machine of the system controller

FPGA. This state machine performs two functions first, it transfers a header to the HCI

system to identify which CPU and FIFO is being transferred. Second, it cycles through

the FIFO arrays transferring out the 82 bytes of data and address. In designing this state

machine, it was essential to break the machine into four separate sections. These sections

are the XFER, CPU, FIFOXFER, and BYTE state machines. This section will begin by

the discussion of the XFER state machine, which is the controller of the transfer FSM.

41

1. XFER State Machine

The XFER state machine is the dominant FSM in this design. It monitors the

INTRCNT discussed preciously in the VOTE machine section. When the counter is

incremented the state machine asserts signal to commence the transfer of FIFO data to the

HCI.

With the assertion of INTRCNTR, the FSM transitions to the XFERP state and

asserts the Process Transfer (PROCXFER) signal. This signal is used to start the transfer

process in the CPU state machine. The final state transition occurs when the INTRCNTR

signal equals zeros allowing the machine to transition back to the XFERSTRT state

deasserting PROCXFER and switching off the CPU state machine. If the INTRCNT

signal is incremented while this state machine is in the XFERSTART state then

PROCXFER remains asserted continuing the transfer process for the second interrupt.

The XFER FSM is shown in Figure 4.6.

AO

?t% .'TV4 WTQ PR0CXFER=1;

XFERSTRT j / XFERP \

)

PROCXFER=0;

Figure 4.6. XFER State Machine

2. CPU State Machine

The function of this machine is to cycle through each CPU and thereby cycle

through the corresponding FIFO array for that CPU. The state machine is started by the

XFER state machine and commences with the transfer of CPU A FIFOs. The transfer

process begins with the assertion of a signal FIFOENG to enable the FIFO transfer

machine and the setting of the CPU header byte. The state machine resides in this state

until a counter CPUCNT is incremented indicating completion of the transfer process.

The FIFOENG signal is deasserted disabling that set of FIFOs. The state machine then

continues the process with the next CPU. The process and state transition is discussed in

detail in the following paragraphs.

43

When enabled by the assertion of PROCXFER, the state machine transitions from

the STRT state to the CPU A state asserting the signals FIFO Engine (FEFOENGA) and

CHDR[1:0]. The BYTE state machine in forming the Header byte utilizes the Control

Header (CHDR) signal. Figure 4.7 shows the header signal format formed corresponding

to a CPU.

Bit 1 BitO

Processor
00-A
01-B
10 -C

Figure 4.7. CHDR Format

The FIFOENG signal is specific for each processor and is utilized in

determination of what transition path to take by the FIFOXFER FSM. The assertion of

FIFOENG starts the transfer process in the FIFOXFER and BYTE state machines. The

negation of this signal upon exit from a state, for example FIFOENGA transitioning to

zero, causes the transfer process for the CPU A to cease.

State to state transition in this machine is dependent upon the signal CPU Counter

(CPUCNTR). This signal is controlled by the FIFOEXFER FSM and indicates what

CPU is being serviced. When CPUCNTR is equal to 3, the last state in this machine,

CPUCOMP, asserts the signal XFERCOMP that indicates to the VOTE FSM that the

XFER FSM has completed a transfer cycle. The CPU State machine is shown in Figure

44

FIF0ENGA=1;
CPUHDRf1:0]=2Ib00;

PR0CXFER==1 ' CPUA

o D) if~-j\ f y==9 'h Q ■*

F!FOENGA=0;

CPUHDR[1:0]=2'b11;

AWAlTSTi

GPUHDRf1:0]=2'b01
FF0ENGB=1;

F!FOENGB=0;

CPUCN1 ==tt 10

CPUHDR[1:0]=2'b10;
FIF0ENGC=1;

ÜPUCWT==2'ÖS*X

FIFOENGC=0;
XFERC0MP=1;

Figure 4.8. CPU State Machine

3. FIFOXFER Engine State Machine

The next FSM in the hierarchy is the FIFOXFER FSM. The purpose of this

machine is cycle through the FIFOs array of each CPU. This FSM waits in its initial state

FSTART, until enabled by the CPU FSM. When the FBFOENG signal is asserted by the

CPU FSM and the Header Complete (HCOMP) signal from the BYTE transfer FSM,

discussed next, the FSM transitions to state FIFOSTO. The assertion of the HDONE

indicates that the header byte has been transferred. This functionality was necessary to

45

allow the FPGA to drive the bi-directional CTRLDATA bus before enabling the FIFO to

drive the bus. As discussed previously, the FBFOENG signal is utilized to determine

which FIFO control lines are asserted. The transition from state FIFOSTO has three

possible transitions determined by the FDFOENG signal which in turn enable the

assertion of three control buses FIFOCTRLA, FIFOCTRLB, or FIFOCTRLC. This design

implementation was required to enable the FIFO array corresponding to the appropriate

CPU. The FIFO Control bus is 11 bits wide with only the last 10 bits controlled by the

FIFO ENGINE state machine. The first bit of the control line is controlled by the

FIFODATA state machine discussed previously. Upon assertion of the FIFOCTRLA bus.

the BYTE transfer machine begins to transfers the contents of the FIFO that holds the

most significant bvte of the 32-bit address and data. The format of the FEFOCTRL word

is given in Figure 4.9.

Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit
10 9 8 7 6 5 4 1 3 2 1 0

FIFO FIFO FIFO FIFO FIFO FIFO
00-A 00-B 00-C 00-D 00-E WRITE

ENABLE

Figure 4.9. FIFOCTRL Word

The FDFOENG state machine waits in state FTFOSTO until assertion of the

completion signal from the BYTE Transfer state machine. FIFOSTO additionally asserts

the FIFOHDR register that is used in determination of the header byte by the BYTE

Transfer machine. The FSM remains in this state until the FIFOCOMP variable is

deasserted indicating that the BYTE Transfer machine has completed the transfer of a

46

FIFO's contents. The state machine transitions to the next state when the BYTE

TRANSFER machine asserts the signal HDONE indicating that the header information

has been sent. The appropriate control lines are asserted during the transition action and

this process is repeated until state FIFOST4. This state indicates completion of the

transfer of the last FIFO in the array. Upon assertion of the FDFOCOMP signal, the state

machine increments the register CPUCNT that is utilized by the CPU state machine

discussed previously to enable a different CPU FIFO array. If the CPUCNT is equal to

two, the state machine takes a different transaction path and resets CPUCNT to zero.

This FSM is shown in Figure 4.10.

47

'
-r* X ^ C3
r> P3
X O
o O
X =.

~o
ti <-!"

fT> r:> o
o
rr>
o

48

4. BYTE Transfer Machine

The final FSM in the transfer hierarchy is the BYTE state machine. The function

of this state machine is to transfer the header information and the 82 bytes of information

from each FIFO in the array. Enabled by the assertion of any FEFOENG signal, the state

machine transitions from the BYTSTRT state. Transitioning to state BYTE2, the FSM

asserts CUARTCSN and CTRLÄDDR identifying to the UART the specific register to

write the data. State BYTES next asserts the address strobe signal, CUARADSN, and

forms the header on the CTRLDATA output by OR'ing the contents of the registers

CHDR and FHDR. This state additionally asserts the signal Header Enable (HDREN),

which allows the FSM to drive the bi-directional CTRLDATA bus output lines.

Transitioning to state BYT4, the state machine asserts Control UART Read Enable

(CURDEN) allowing the UART to read in data on the CTRLDATA bus. The state

machine transitions to state BYTE5 setting the signal BYTCNT equal to one. This signal

is used to control the number of transfers that the BYTE machine conducts. State BYTE7

deasserts the output enable signal, HDREN, allowing the FIFOs to drive the CTRLDATA

bus. This state also asserts the signal HDONE indicating to the FEFOXFER machine that

the header information has been transferred allowing it to assert the FIFOCTRL lines.

The FSM then transitions through states BTYE7 through BYTE10. These states act as a

'FOR' loop cycling the data out of each FIFO by asserting and deasserting FIFO Write

Clock (FWRCLK) signal. Additionally, as the FSM cycles between these states the

register Byte Count (BYTCNT) is incremented. When the BYTCNT is equal to eighty-

two, the state machine transitions to state BYTE11 asserting the FTFOCOMP signal and

49

the FIFOCOMP signal and deasserting the HDRDONE signal. The state machine repeats

the process with the machine transitioning through the states until the FEFOENG signal is

deasserted.

CÜARTCSM-0:
CÜARTADSN-0:
CUWREN-0:

/®as&y~

CÜARTCSH-1:
CTRLftDDRpöMfliOOO:

CÜARTADSU-1:

rf*-^ FlFQErlGA\<f}FQ£.'i'S2\££0, wasHSC

EYTCNT-0:i

r

P<VRCtX1-1:
/ /

CTP. LDATAV-C PU H D R FirOH D R:
HDREN-1:
FWRC1X1-0:

rVvRC 1X1-1:
HDöKE-0:

\ JEYTCMT-EYTCNT-M:
SiCürfr« fiis-fßfJtW *j ■ '

Figure 4.11. BYTE Transfer State Machine

The completion of the system controller design finishes the design and

programming of the programmable logic devices. With the completion of these

programmable devices and installation in the TMR board, the only remaining change to

50

implement is the addition of white wires. The next chapter presents the addition of the

white wire and required design changes.

THIS PAGE INTENTIONALLY LEFT BLANK

52

V. DESIGN COMPLETION

Any design when transitioned to a second engineer for completion is a difficult

process. The new engineer not only has to have confidence in the design of his

predecessor, but also still remain alert for potential problems. This chapter discusses the

addition of required logic changes with the addition of white wires and the discovery and

correction of a hardware incompatibility.

A. WHITE WIRES

The addition of the white wires to add additional logic to the TMR design was

discussed in Reference [2]. The main concern of this author was the difficulty with the

addition of these wires. The white wires required were primarily from the Xilinx FPGAs,

which are 240 pin devices. The small scale of this device required a high level of skill to

implement the changes.

The changes were completed with the assistance and expertise of David

Rigmaiden of the Space Systems Academic Group. Utilizing a precise soldering station

and microscope, the addition of the white wires took over a day and a half. The soldering

of the pins to the FPGA required a high degree of precision and was very time intensive.

With the addition of the white wires complete, the TMR R3081 system was ready for

initial testing.

B. VOLTAGE REGULATOR

As discussed earlier any transition of a design from one engineer to a follow on

engineer is a wary process. Upon transition of the board from Capt. Summers, it was

necessary to conduct a thorough review of the design. It was during this review and the

53

power/ground checks discussed in chapter VI that a device compatibility problem was

found.

The Xilinx FPGA utilized in the design fabrication was the XC4013-XLA. These

devices provide the voting function that is the cornerstone of the design. The FPGAs

soldered to the board required a supply voltage of 3.3 Volts. This posed a problem since

the TMR board contained a 5-Volt and 12-Volt bus. There were two possible solutions to

this problem. The first was to purchase new 5-Volt FPGAs and replace the 3.3V FPGAs.

The second possible solution was to create a 3.3V bus for the FPGAs.

The first solution though sounding simplistic was quite difficult. The 240 pin

FPGA is a flat pack device precisely soldered to the board. The unsoldering of these

devices would lead to their destruction. The difficulty then came of soldering the new

devices to the board. The expertise and precision that was required to the soldered the

devices is very labor intensive. The slightest error though would lead to faults in the

board and would have dramatic effects on any troubleshooting.

The second solution, the addition of a 3-Volt bus to the board for the FPGAs

sounded more promising. The only problem with this solution was the impact of noise on

the FPGA.

It was decided to proceed with the addition of a 3-Volt bus to the TMR design.

This solution posed the minimal amount of difficulty. Additionally, this was a low cost

solution when compared with the cost of new FPGAs. The following sections discuss the

selection of the Voltage Regulator and the addition of the 3V bus.

54

1. Voltage Regulator

The selection of a voltage regulator first required the calculation of the current

requirement of the FPGAs. The Xilinx website details a formula that is dependent on the

number of logic cells utilized in the design. [Ref. 13]

PLNT= Vcc * Kp * Fmax * NLC * TogLC

Where: Vcc = 3.3 V; Kp =28xl0"!2: Fmax=25Mhz; NLC=1300; TogLC=.20

Kp is a constant, which depends on the logic family. NLC is the number of logic

cells used in the design. For the worst-case scenario, the maximum number of logic cells

was utilized. Togu: is the average percentage of logic cells toggling at each clock. The

Xilinx recommend a using 20 percent for this value.

The calculated power requirement for each FPGA was .6006 Watts. Then using

the total wattage of 1.8 and the input voltage of 3.3 Volts, a current estimate of .546

Amps was calculated. Utilizing this information, the Maxim 832 voltage regulator was

selected. This fixed 3-Volt voltage regulator has an 8 V to 30 Volt input ranges and is

rated at 1 Amp. Now with the device selected, a design to add the 3-Volt bus to the

TMR system was required.

2. 3-Volt Bus

The addition of a three-Volt bus to the three FPGAs on the TMR board required a

high level of skill and expertise. Each FPGA had 16 VCC pins. Additionally, each

FPGA had a number of capacitors. The first step in the process was to unsolder a pin on

55

an FPGA and discover the amount of it would permit. Keep in mind that all of this work

is accomplished with a microscope. The first pin on the system controller FPGA when

unsolder from the board would only permit about a 20 degree bend. The pins on the

FPGA are extremely delicate and the danger of reaching the breaking point was high.

The remaining pins on one side of the FPGA were unsolder and lifted to the same angle.

The next step was to solder a wire to create the 3V bus. The first step consisted of

laying a small strip of cellophane tape over the remaining soldered FPGA pins for

protection. The distance was measured between the lifted pins to cut small tubing for

protection. A wire was then solder to the first pin and the small tubing slid on. This

process was repeated around the FPGA creating a 3-Volt bus. The remaining step was to

unsolder the capacitor leads and solder them to the bus. The completion of this wired bus

around the each FPGA led to the final step the addition of the voltage regulator board.

In order to make the addition of the 3-Volt bus to the board simplistic and

permanent in nature it was decided to use an evaluation kit provided by Maxim. This kit

provides a regulated 5.0V output voltage and is fully tested on a surface-mount printed

circuit board. The kit comes with a MAX831 IC? but was easily converted to the use the

MAX832 (3.3V output). After soldering the MAX832 onto the board, it was tested to

confirm a constant 3.3 Volt 1 Amp output. This small printed circuit board was then

permanently mounted over the FIFOs on the TMR board. The output from the board was

then connected to buses surrounding the FPGAs. The photograph in Figure 5.1 depicts

the work and components discussed above.

56

IPS
ud P P
1" !

1 ^-^]g^ ÄJk*lS:

Figure 5.1. MAXIM Voltage Regulator

The addition of the voltage regulator marks the final hardware change

implemented to the design. This allowed transition to the next phase of the project,

design testing. The testing phase begins with basic power and ground checks, which is

presented in the next chapter.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

VI. SYSTEM TESTING

When testing a new programmable system one cannot be certain whether a

specific problem or "bug" is caused by the hardware being faulty or if the software is in-

correct. The objective of the testing is to identity any cause for a malfunction in the

shortest possible period of time. Since there are numerous places in the system where

problems may exist, the process has to be as efficient as possible. One efficient method

of testing is to separate it into phases to ensure basic operation before proceeding to more

complete functions. This method was utilized in the testing of the TMR board and it is

broken down into the following two phases of initial and system level checks.

A. INITIAL CHECKS

Before attempting to operate the system, initial checks of the board were

conducted. These initial checks consisted of three steps: power/ground, clock signal and

reset signal testing. The purpose of this initial testing is to ensure safe operation of the

board and connectivity to system devices. Though these tests may seem simple and

mundane, the bypassing of these checks could lead to unnecessary troubleshooting in later

testing phases or damage to components.

1. Power Ground Testing

Before powering the board, it is essential that the verification of the connection of

power and ground be verified. This procedure verifies that no manufacture defects are

present in the board from fabrication. The chance of this occurring is slight as a result of

the automation used in the fabrication process, but the potential impacts are very crucial.

Bypassing this step could allow a shorted pin to destroy board components or lead to

59

unnecessary errors. This procedure was conducted utilizing a digital multi-meter. All

component level power and ground pins were verified and no shorts were found. It was

during this phase of the testing that the voltage compatibility problem of the FPGAs was

discovered and verified. The FPGAs utilized in the board fabrication were low voltage

devices, while the board was designed with a 5-volt bus. The solution to this problem

was discussed in chapter V. The completion of these tests certified that the board was

safe to apply power to and enabled movement to the next phase of testing the clock

signals.

2. Clock signal testing

Another input that has to be verified that affects all components is the clock input.

The clock waveform has to be correct in terms of voltage and timing. If the clock inputs

are not correct, they have to be repaired before proceeding to the next step. The IDT3081

does not have a definite time relationship between the input clock and the SYSCLK

output signal. The IDT manual contains a clock synchronization algorithm to conduct

upon powering up the board, which can be found on page 11-8 of Reference 12. This

process is applicable to the R3081 multiple processor designs utilizing Vi frequency bus

mode. This procedure consists of performing a normal reset and selecting full frequency

bus mode. This will force all processors to align the phases of their output clocks. Next,

allow reset to be de-asserted for at least two to three clock cycles and then assert it. Now

select one-half frequency bus mode and de-assert reset.

Utilizing an Oscilloscope, initial test of the TMR board verified an 11 MHz signal

for the UART and an intermittent 20 Mhz clock signal for the 3081. The 20 MHz clock

60

signal is inputted to the microprocessor an output as a 10 MHz clock signal. The

measured clock input to the 3081 was intermittent and tracing the difficulty led to the

oscillator. Initially a failed oscillator was suspected. Further troubleshooting determined

the oscillator had a bent connector that was not allowing proper seating. Upon reseating,

the clock-input signal to the 3081 was reliable.

3. Reset Signal

The last signal to verify in the initial testing is the reset logic. The reset signal

allows for the FPGA programming to be completed from the synchronous PROMs prior

to the processor attempting to make a memory access. This time period allows the FPGA

to map the voting and address control logic. If this did not occur in the correct logic

sequence, the processor would experience a bus error.

The logic of the reset sequence was tested with an oscilloscope. The oscilloscope

was connected to the reset pin of the 3081 processor. Then by asserting the board or

system level reset push button the assertion of the reset signal was observed verifying

correct operation. The time delay for the reset of the FPGA is unobservable. This step

completes the initial testing phase and allowed us to proceed to the system level testing.

B. SYSTEM LEVEL TESTING

By completing these initial electrical checks first, the scope of possible trouble

within the overall system was minimized. The next checks confirm proper operation of

the basic system components, the microprocessor, memory, and UART. The

microprocessor has to be capable of reading and writing data to and from memory before

61

it is possible to proceed to further testing. The first step in this process is the

programming of the microprocessor.

1. Processor Initialization

The IDT3081 is a 32-bit RISC microprocessor that is designed using the MIPS

architecture [Ref. 12]. Although most programming occurs using high-level language,

like "C", the programming during the testing was written in assembly language. This

enabled precise control and setup of the processor structure by directly initializing the

control registers. The following sections will first discuss the operations necessary to

initialize the 3081 to a functional state and then the operational purpose of the program.

Keep in mind, the program discussed in the following sections and given in Appendix C

sets the processor in a known state for uncached operations only.

Before discussing the execution of the written program, this section will impart an

understanding of the process of creating a boot program. The program is written in

assembly language programs using a general word processor such as Notepad. This file is

then assembled and linked using the Generic Cross Compiler (GCC) and linker provided

by IDT. A makefile, which is similar to batch file, is utilized to assemble and link the file

automatically. This makefile is listed in Appendix C and details options used by the

compiler and linker. One important fact of information is the location that the code is

assembled to start at in memory, which is at address OxlFCOOOOO. After a hardware

reset, code will be running is KSEG1 (uncached) which contains address OxlFCOOOOO.

When the processor is setup in kernel mode, four kernel/user segments (KUSEG)

memory spaces are available. KSEG1 is a 512 Mbytes segment that is used for I/O

62

registers and boot ROM code. The address OxlFCOOOOO corresponds to the processor's

reset vector. The processor retrieves the first instruction here and begins program

execution on power- up. When the compiler and linker have assembled the file, they

output a memory map file, a binary file, and a Motorola s-record file that is downloaded

into ROM. The S-record file is downloaded using a computer into a device programmer.

The next step in the process is to prepare the ROM. The ROM utilized in the

TMR design is the AMD 27C010 128kx8 UV erasable. The first step in the burning

process is to either erase the devices or verify they are blank. This is accomplished by

placing them under a UV lamp for a period of 20 to 40 minutes erases the ROM. The

time period is determined by the life of the devices. The more erasures a device has

experienced the longer the period of time to erase them. Once the PROMs are erased and

tested by the device programmer as blank, they are ready to burn.

The final step in the process is to determine if the file has to be split. This is

determined from the size of the ROM used in the design. For example, the TMR board is

using four 128 x 8 PROMs and each PROM has eight data output lines. Therefore, the

file is split twice. The first 512K splits the memory in half and the next 512K split

separates the halves again. The result is four separate data blocks that are programmed in

the following address ranges 0-1FFFF, 2-3FFFF, 4-5FFFF, and 6-7FFFF. The first

PROM outputs data on lines D0-D7, the second D8-D15, the third D16-D23, and the

fourth D24-D31.

63

a) Status Register

Upon reset or initialization, the IDT 3081 boots up in an unknown state.

The programmer's first priority is to force the processor into a known state by writing to

the status register. This register controls the setup of the processor and memory

management functions. The 32-bit register format is given in Figure 6.1.

31 28 27 26 2S 24 23 22 21 20 19 18 17 16 15 8 7 6 5 4 3 2 1 0

CU
(Cu3...CuO) 0 RE III BEV TS PE CM PZ SwC IsC IntMask

lnK..O, Sw1:0 111 KUo lEo KUp lEp KUc lEc

2 12 1111111

CU: COPROCESSOR USABILITY
BEV: BOOTSTRAP EXCEPTION VECTOR
TS: TLB SHUTDOWN
PE: PARITY ERROR
CM: CACHE MISS
PZ: PARITY ZERO
SwC: SWAP CACHES
IsC: ISOLATE CACHE
RE: REVERSE ENDIANNESS

2 111111

IntMASK: INTERRUPT MASK
KUo: KERNEL/USER MODE. OLD
lEo: NTERRUPT ENABLE, OLD
KUp: KERNEL/USER MODE. PREVIOUS
lEp: INTERRUPT ENABLE, PREVIOUS
KUc: KERNEL/USER MODE, CURRENT
lEc: INTERRUPT ENABLE, CURRENT
0: RESERVED: READ AS ZERO

MUST BE WRITTEN AS ZERO

Figure 6.1. Status Register Format. From Ref. [12]

Only a few of the bits in this register are defined after hardware reset

initialization which are: the CPU is in kernel mode, KUc=0, interrupts are disabled,

lec=0, the data and address caches are not swapped, SWc=0, and the processor is in

bootstrap mode, BEV=1. The initialization command used in the program OR'd three

global variables SR_PE, SR-CUO and SR_BEV. These global variables are defined in a

header file that is linked with the main program. The three variables represent the options

chosen for the boot up and are required for proper operation. This command is written to

the status register which resets the parity error, set Coprocessor one useable, Coprocessor

zero to kernel mode, clears interrupt masks, and set the processor in bootstrap mode. The

assertion of the Bootstrap exception vector (BEV), determines the location of the

exception vectors of the processor. The boot code utilizes uncached space, therefore the

64

BEV is set to 1, and the exception vectors reside in unchacheable space versus cacheable

space.

b) The Cause Register

The cause register is a 32-bit register that describes the last exception

conducted by the processor. The register's format is given in Figure 6.2. With the

exception of the Software interrupt or SW bits, all other bits in this register are read only.

The SW bits can be utilized to force an interrupt pending signal to the processor or clear a

pending interrupt by writing a "0". This last step, clearing the interrupts, is required in

initialization of the 3081. In the program, the global variable C0_CAUSE was written to

the register to clear software interrupts. Further information on any of the fields in the

Status or Cause register not discussed above can be found in Reference [13].

31 0
BD HI CE Ulli IP[5..0] Sw 111 ExcCode III

1 1 2 12

BD: BRANCH DELAY
CE: COPROCESSOR ERROR
IP: INTERRUPTS PENDING
Sw: SOFTWARE INTERRUPTS*

ExcCode: EXCEPTION CODE FIELD

m : RESERVED
Must Be Written as 0
Returns 0 when Read

'READ AND WRITE. THE REST ARE READ-ONLY.

Figure 6.2. Cause Register Format. From Ref. [12]

c) Functional Testing

One of the most difficult problems with verifying the functionality of a

system is the possibility of software errors. If the software does not properly setup the

processor or function in the designed manner then the overall testing of the system is

65

worthless. This was not the case in with the testing of the TMR board. In the search for

research information, the University of California at Davis was an exceptional source.

Their experience with the ARGOS satellite project on Fault Tolerance software design

and the IDT 3081 was a source outstanding resource. An application Engineer, Mr.

Lance Halstead, at the University was also interested in building programs for the 3081.

Providing him with copies of a program designed and developed for the TMR board, he

made minor modifications for his specific board to test the program. The program

functioned correctly by outputting a signal to LEDs and counter on his board. The

verification of the code limits functionality problems to the board hardware logic. This is

a major step in the design process, because problems are limited to the board hardware

design. The program verification by an outside source on an operational design

eliminates the possibility of software errors.

C. TEST DATA AND WAVEFORMS

This section will discuss the data and waveforms measured and recorded utilizing

the HP 16500B digital logic signal analyzer. The logic analyzer is utilized to record data

on signal lines throughout the TMR design. The only limitation placed on the number of

signals analyzed at one period was the number of data pods available. Each data pod

connects to the back of the logic analyzer and has 15 input lines for a data signal. One

pod signal line is connected to the system or master clock. After all connections to the

board are complete, the logic analyzer is setup with labels corresponding to the data lines.

The logic analyzer is next set in one of two modes timing or state analysis.

Timing analysis acquires data and stores it at equal time intervals. The internal clock of

66

the logic analyzer controls the time interval. State analysis is acquires data and stores it

while a system is under test. The main difference between the two is that the clock for

the state mode is supplied by the system under test.

The final step is to set a trigger for the logic analyzer to record data on. The

trigger is selected by reviewing the output from the compilation of the assembly code.

For example, in the ROM assembly language program, the first instruction in the code is

OB FO 00 62. This is the opcode for a jump instruction, which is 0000 10 in bits 31-26.

The jump address is formed by taking bits 31-28 (OxB) from the PC and using the offset

found in bits 25-0 of the instruction, shifting left by two to give bits 27-0 of the address.

Thus for OB F0 00 62, the offset is 11 1111 0000 0000 0000 0110 0010 and shifting left

by 2 gives 1111 1100 0000 0000 0001 1000 1000 or OxFC00188. This is correct code for

a "jump start", where the start label is at BFC0 0188. Triggering on this instruction

obtained the setup of the processor and the data on continuous read/write loop.

1. ROM Read

The following data segment is only a small portion of the data captured with the

logic analyzer. The board was setup with the initial test program that read in the program

code form the ROM and executed a write cycle of 0x00000000 to the KESG0 memory

area. The purpose of the code was to verify the TMR board was reading program code

correctly from the ROM.

Following the data segment in Table 6.1, the processors start the bus cycle with

the assertion of the read, RD, signal in label 1516. The A/D bus is driven with the voted

address OxADOOOOOO and latched in with the assertion of ALE in label 1516. In label

67

1517, ALE is negated allowing the A/D bus to be driven by the voted data 0x23080004.

The memory control asserts is signal by the assertion of the Voted read signal in label

1517 to assert the read enable, RDEN, and read data enable signals. A single wait state is

inserted in the cycle because of EPROM data delay. The cycle is ended with the negating

of the read signal in label 1521. A waveform of the data captured by the logic analyzer of

the read sequence data is given in Figure 6.3.

Label > AD31.0 ALE RST INT3.5 RD VOTRD BUSERN ACKN DATAEN
Base > Hex Bin

0

Bin

1

Binary Bi

1

Binary Binary Bina Binary

1515 AD000000 100 1 1 1 1
1516 AD000000 1 1 100 0 1 1 1 1
1517 1FC001A0 0 1 100 0 0 1 1 0
1518 AD000000 0 1 100 0 0 1 1 0
1519 25080004 0 1 100 0 0 1 1 0
1520 25080004 0 1 100 0 0 1 1 0
1521 25080004 0 1 100 1 1 1 1 1
1522 25080004 0 1 100 1 1 1 1 1
1523 25080004 0 1 100 1 1 1 1 1
1524 25080004 0 1 100 1 1 1 1 1
1525 25080004 0 1 100 1 1 1 1 1
1526 25080004 1 1 100 1 1 1 1 1
1527 00001050 0 1 100 1 1 1 0 1
1528 00000000 0 1 100 1 1 1 0 1
1529 00000000 0 1 100 1 1 1 1 1

Table 6.I.A. ROM Data List

68

Label > DATAEN BUSREQ RDCEN DIAG10 MEMEN MEMCTL SYSCLK
Base > Binary Binary Binar Binary Hex Binary Hex

1515 1 1 1 111 AO 0110111011110 0
1516 1 1 1 110 AO 0110111011111 1
1517 0 1 1 111 AO 0110110011110 0
1518 0 1 1 111 01 0110110011111 1
1519 0 1 0 111 01 0110110011110 0
1520 0 1 0 111 00 0110010011111 1
1521 1 1 1 111 00 0111010011110 0
1522 1 1 1 111 AO 0110111011111 1
1523 1 0 1 110 AO 0110111011110 0
1524 1 1 1 100 AO . 0110111011111 1
1525 1 0 1 100 AO 0110111011110 0
1526 1 0 1 110 AO 0110111011111 1
1527 1 0 1 100 AO 0110101111010 0
1528 1 0 1 100 El 0010001111011 1
1529 1 0 1 100 El 0011001111010 0

Table 6. LB. ROM Data List

Label > SYSCLK VOTADD WRITE RDATAE RDENN CYCEND RDCENN EPROMC
Base > Hex Hex Hex Hex Hex Hex Hex Hex

1515 0 006B 1 1 1 0 1 0
1516 1 006B 1 1 1 0 1 0
1517 0 006B 1 1 1 0 1 0
1518 1 006B 1 0 0 1 1 0
1519 0 006B 1 0 0 1 1 0
1520 1 006B 1 0 0 0 0 0
1521 0 006B 1 0 0 0 0 0
1522 1 006B 1 1 1 0 1 0
1523 0 0068 1 1 1 0 1 0
1524 1 0069 1 1 1 0 1 0
1525 0 0068 1 1 1 0 1 0
1526 1 0416 0 1 1 0 1 1
1527 0 0416 0 1 1 0 1 1
1528 1 0416 0 1 1 1 1 1
1529 0 0416 1 1 1 1 1 1

Table 6.I.C. ROM Data List

69

(100/500NHZ Lft E j (Waveform 1] (ftcq. Control] (cancel] (Run)

Accumulate
Off

states/Div
1

Del ay
126

Markers
Off

Acquisi tion Time
25 Sep 2000 16'28:52

SVSCLK

RD

VOTRD

ALE

PRONCS

RDftTAE

RDENN

RDCENN
_L

Figure 6.3. ROM Data Waveform

2. RAM Write

The purpose of this program was to verify the ram data write cycle. A RAM read

was not possible, because the RAM segment is located in a cache memory section. The

initialization of the cache was not necessary for this program execution. This program's

function was write the data word OxDEADBEEF to an address in the RAM segment.

The data sequence in Table 6.2 details the signals during a RAM write operation.

In label 128, the processors have asserted the Write, ALE, RAMCS*, and the A/D bus

with the address 0x000000000. The processor next negates ALE, latching in the address.

In label 129, the A/D bus is now driven with the data OxDEADBEEF. The assertion of

the write signal and the majority voting leads to the assertion of the voted write signal,

70

VOTWR. The memory controller PLD responds to this by asserting the write data

enable, WRDAEN, and acknowledge, ACKN, signals in label 129 and 130. The

processor ends the bus cycle by deasserting write in label 131. A waveform is given with

respect to this process and data segment in Figure 6.4.

The data segment in Table 6.2 also confirms the TMR FPGAs executing the

majority voting properly. During the code execution and as seen below, the INTCS*

signal remained deasserted. The correct execution of this program verifies the transfer of

data between components on the board. The next test step is data output from the UART,

which is presented in the following section.

Label > WRITE* VOTEWR* RDEN* CYCEND* RDCEN* RAMCS* ROM1 INTCS*
Base > Hex Hex Hex Hex Hex Hex Hex Hex

127 1 1 1 0 1 1 00 1
128 0 0 1 1 1 0 00 1
129 0 0 1 1 1 0 00 1
130 0 0 1 0 1 0 00 1
131 1 1 1 0 1 1 00 1
132 1 1 0 1 1 1 00 1
133 1 1 0 1 1 1 00 1
134 1 1 0 0 0 1 00 1
135 1 1 0 0 0 1 00 1
136 1 1 1 0 1 1 00 1
137 1 1 1 0 1 1 00 1

Table 6.2.A. RAM Data List

71

Label > BUSREQ RDCEN DIAG10 MEMEN MEMCTL SYSCLK
Base > Binary Binar Binary Hex Binary Hex

127 0 1 110 AO 011010111110 0
128 0 1 111 El 001000111111 1
129 0 1 110 El 001100111110 0
130 0 1 110 AO 011011111111 1
131 0 1 110 AO 011011001110 0
132 0 1 110 01 011011001111 1
133 0 1 110 01 011011001110 0
134 0 1 110 00 011001001111 1
135 0 0 110 00 011101001110 0
136 0 0 110 AO 011011101111 1
137 0 1 110 AO 011011101110 0

Table 6.2.B. RAM Data List

Label > AD31.0 ALE RST INT3.5 RD* BUSER* ACK* DATAE*
Base > Hex Bin

0

Bin

1

Binary Bi

1

Binary Bina Binary

127 25080004 100 1 1 1
128 00000000 1 1 100 1 1 1 1
129 DEADBEEF 0 1 100 1 1 0 1
130 DEADBEEF 0 1 100 1 1 0 1
131 DEADBEEF 0 1 100 1 1 1 1
132 1FC001BO 1 1 100 0 1 1 1
133 DEADBFEF 0 1 100 0 1 1 0

134 24019FFF 0 1 100 0 1 1 0

135 24019FFF 0 1 100 0 1 1 0

136 24019FFF 0 1 100 0 1 1 1
137 24019FFF 0 1 100 1 1 1 1

Table 6.2.C. RAM Data List

72

100/500MH; z LA E] (Waveform 1] (flcq. Control] (cancel] (Run]

Accumulate
Off

states/Div 1 J
'
Del ay
397 j

Markers
Off

Acquisi tion T
28 Sep 2000 14s

ime
18; 19

SVSCLK

WRITE

VOTHR

ALE

RAMCS

WRDATE

ACKN

4

Figure 6.4. RAM Data Waveform

3. UARTDATA

The function of the UART program is to initialize the UART for I/O and write a

continuous data stream to the transmit register. This program, listed in Appendix C,

initializes the processor in the exact same manner as the two previous programs but the

remainder of the program is entirely different. The program first initializes the 16550

UART by writing data to the line control, FIFO control, modem control, and divisor latch

registers. This initializes the UART for eight data bits, no parity, and in polling mode.

Next, 0x83 or 72 decimal is written to the divisor latch register for a baud rate of 9600.

The program then enters a continuous write loop that outputs the data, 0x2322223, which

represents the ASCII character # to the transmit register.

73

The data sequence in Table 6.3 details the signals during a UART write operation.

In label 378, the processors have asserted the Write, ALE, and the A/D bus with the

address OxlFEOOOOO. The processor next negates ALE, latching in the address. In label

379, the A/D bus is now driven with the data 0x23222223. The assertion of the write

signal and the majority voting asserts the voted write signal, VOTWR. The memory

controller PLD responds to this by asserting the write data enable, WRDAEN, and

acknowledge, ACKN, signals. The processor ends the bus cycle by deasserting write in

label 380. A waveform is given with respect to this process and data segment in Figure

6.5.

Additionally, the output data was verified by connecting a PC to the output port of

the UART. The PC was running the HyperTerminal program and configured to match

the setup characteristics of the UART. A continuous data stream of the ASCII character #

was outputted to the screen. The next step in the test sequence is to receive data input

from the PC, modify this data and output the modified data to the PC. This program and

data is presented in the next section.

Label > SYSCLK AD31.0 ADDR3 2 WRITE VOTWR ALE RD VOTRD
Base > Hex Hex Binary Binar Hex Bin Bi Hex

378 1 1FE00000 00 0 Oil 1
379 0 23222223 00 0 0 0 1 1
380 1 23222223 00 1 0 0 1 1

Table 6.3.A. UART Data List

Label > VOTBE UARTCS WREN WRDAEN ACKN BURST RDCEN TIMRCS
Base > Binary Hex Hex Hex Bin Bin Bin Hex

378 0000 0 F 0 1 1 1 1
379 0000 0 0 1 0 1 1 1
380 0000 0 0 1 0 1 1 1

Table 6.3.B. UART Data List

74

Label > RAMCS UARTCS COVTER CYCEND INT5.3 AVOTER COVTER
Base > Hex Hex Hex Binary Binary Binary Hex

378
379
380

1
1
1

100
100
100

Table 6.3.C. UART Data List

Label > VOTINT BUSERR
Base > Hex Binary

378
379
380

Table 6.3.D. UART Data List

100/500MH; z LA E j (Waveform 1] (flcq. Control] (cancel} (Run)

Accumulate
Off

states/Div
1

(Delay) (Markers
i 382 j [Off)

Acquisition Time
25 Oct 2000 10:29:57

SYSCLK
WRITE
V0TWR
ALE
UARTCS
WRDAEN
WREN 0
WREN 1
WREN 2
WREN 3
ACKN

1 1 i i 1 i i 1 1
! 1

1 1
1 I 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1

Figure 6.5. UART Data Waveform

75

4. UART INPUT/OUTPUT

The purpose of the UART I/O program was to test the board read cycle and

storage of data input. This program read in data from the UART receive register, added

30 to this data, and transmitted this data back to the PC. This program differed from the

previous UART code in the setup of the UART. Specifically, the modem control register

was loaded with 0x23, which set the UART in Autoflow control mode. The Autoflow

control mode enabled to UART to control the Request to Send (RTS) and Clear to Send

(CTS) signals. This change was implemented to enable the program to output individual

characters.

The program indicates it is running by outputting the ACSII character # to the PC.

Then entered a loop, which checked the status register receive data bit. The assertion of

this bit informed the UART that the receive register held one byte. The data that was read

in is stored in the T7 register and 30 added to this quantity. The addition of 30 changed

the uppercase ASCII character to a lower case character. The contents of register T7 is

then transmitted to the PC.

The data sequence in Table 6.4 details the signals during the read in and output of

the data. In label 18, the processors have asserted the Read, ALE, UARTCS*, and the

A/D bus with the receive register address OxlFEOOOOO. The processor next negates ALE,

latching in the address. In label 19, the A/D bus is now driven with the input data

0x00000054. This data is then stored in the register T7.

76

Label > AD31.0 ADDR32 ALE SYSCLK BUSERN RD VOTRD RDEN
Base > Hex Binary Bin

1

Decima Binary Bi

0

Hex Hex

18 1FE00000 00 1 1 0 0
19 00000054 00 0 0 1 0 0 0
20 00000054 00 0 1 1 0 0 0
21 00000000 00 0 0 1 1 1 1

Label
Base

18
19
20
21

Table 6.4.A. UART Receive Data

> WRITE WREN VOTWR VOTRD WREN ACKN CYCEND INT5.3
> Binar Hex Hex Hex Hex Bina Binary Binary

1 0
1 F
1 F
1 F

0 1
F 1
F 1
F 1

100
100
100
100

Table 6.4.B. UART Receive Data

Label > TIMRCS EPROCS RAMCS UARTCS COVTER AVOTER VOTINT
Base > Hex Hex Hex Hex Hex Binary Hex

18 1 1 1 0 0 0 0
19 1 1 1 0 0 0 0
20 1 1 1 0 0 0 0
21 1 1 1 0 0 0 0

Table 6.4.C. UART Receive Data

The data sequence in Table 6.5 details the signals during the output of the

modified data. In label 194, the processors have asserted the Write, ALE, UARTCS*,

and the A/D bus with the transmit register address OxlFEOOOOO. The processor next

negates ALE, latching in the address. In label 195, the A/D bus is now driven with the

modified input data 0x00000074. This data is written to the UART, which then outputs

the data on the serial output port.

77

Label
Base

194
195
196
197

Label
Base

194
195
196
197

Label
Base

194
195
196
197

> AD31.
> Hex

ADDR32 ALE SYSCLK BUSERN RD VOTRD RDEN
Binary Bin Decima Binary Bi Hex Hex

1FE00000
00000074
00000074
00000200

00 1
00 0
00 0
00 0

1 1
1 1
1 1
1 1

Table 6.5.A. UART Transmit Data

> WRITE WREN VOTWR VOTRD WREN ACKN CYCEND INT5.3
> Binar Hex Hex Hex Hex Bina Binary Binary

F
0
0
F

F 1
0 0
0 0
F 1

100
100
100
100

Table 6.5.B. UART Transmit Data

> TIMRCS EPROCS RAMCS UARTCS COVTER AVOTER VOTINT
> Hex Hex Hex Hex Hex Binary Hex

1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0

Table 6.5.C. UART Transmit Data

This chapter presented the data captured during program execution. This data

supports the implementation of the TMR design. The goal of the design is the utilization

of COTS devices in space applications. In support of this effort, the next chapter

discusses preliminary design considerations for a space flight board.

78

VII. CONVERSION TO SPACE FLIGHT BOARD

Once the testbed has been designed, implemented, and evaluated, the next logical

step in the evolution of the TMR design is conversion to a space flight board. The

conversion of the design depends on numerous factors, such as determination of parts to

be replaced, size and power constraints just to name a few. The following sections will

discuss issues that deal with the preparation of the TMR board for space applications.

The focus of the design for the TMR board is with respect to the next satellite, NPSAT1,

being designed and built by the Naval Postgraduate School. This satellite design

constrains the power, weight and size for the TMR design.

A. CONSTRAINTS AND TRADEOFFS

Every satellite design conducts studies on the tradeoffs between different system

designs. The following sections contain an overview of the design constraints and

tradeoffs of the TMR design for a space flight board.

1. Power

Power is a precious commodity in space. A satellite is limited in the power that it

has available by the sizes of the solar array and batteries. The TMR design inherently

increases the power required compared to a normal processor board. The implementation

of this design in space applications has to balance the performance and reliability against

with the increased power consumption. The current system design utilizes low power

consumption commercial parts. The conversion of this board to a flight ready design may

require the use of radiation hardened (radhard) components. A radiation-hardened

component is designed to continue functioning when exposed to high levels of radiation

79

over the lifetime of the device. For example, most radiation-hardened components are

designed to continue operating to a total radiation dosage of 20 Krads. Thus, the device

can sustain a dosage of four Krads per year for a period of 5 years. Though the TMR

design is robust and does not allow errors to propagate past the processor, certain devices

that implement the design require increased tolerance. For example, the FPGA contains

the voting logic; these devices reliability has to be as close to 100 percent as possible.

Their failure would cause a breakdown of the TMR design and lead to a total system loss.

The decision on which parts will be radhard will depend on the role of the device, the

power capability of the spacecraft and the life of the satellite. Radhard components

generally require more power than their non-hardened counterparts do. The TMR design

with non-radhard devices currently has power consumption between 6.5 to 9.5 Watts

depending on the function of the board. The predicted maximum power available for

NPSAT1 is 22 Watts. These factors go into the decision model for selecting devices to

utilize in the design.

2. Size

The small size of NPSAT1 limits the area available for the TMR designed board.

The current size of the TMR board is 13x12 inches. In researching the constraints placed

on designs used in the previous Petite Amateur Satellite (PANSAT), it was discovered

this board was too large. Boards previously utilized in the PANSAT design were on

average were 6x4 inches. The solution to this is to section the board into multiple smaller

boards interconnected by bus connectors. In inspecting the current TMR design, two

alternatives were thought of for sectioning the board. The first alternative is to group the

80

components on boards by like device. For example, one board would hold all three

processors and another would hold all FIFOs. The second alternative is to section the

design by breaking the TMR design into individual component boards. An example of

this is that one board would contain an all the RAM/ROM. The second option is by far

the most efficient choice for two reasons. These reasons are design production efficiency

and testing. The design engineer would only need to design the three identical processor

boards and one assorted component board. This option would aid in testing by allowing

each processor board to function alone for testing.

Figure 7.1 depicts one possible configuration for the boards. The processors and

latches would be on one card, the memory, ROM and RAM, on another card. The

Oscillators or clocks, the interrupt circuit, and PLD logic would be placed together. The

last card would contain all three FPGAs and the Serial EEPROM.

81

ADDRESS/DAT A/SYSTEMCONTROLFPGA
SERIALERPROM

PLDs
ADDRLATCH

Processor
ADDRLatches

Figure 7.1. Space Design Layout

3. Vibration Analysis

A design to be utilized for space applications has to be tolerant of the severe

shocks and vibrations experienced during launch. During launch into orbit, the body of

the satellite experiences gravitational forces up to 9G. Once in space, the vehicle will the

experience the shock of being released by an explosive bolt. Loss of connectivity as a

result of such vibrations is avoidable with proper testing. The NPS Space Academic

Group has the capability to conduct this testing dependent on the launch vehicle. In

inspecting the board for possible problems, an immediate source of concern is the surface

mounted FPGA. The FPGA are secured to board by only the soldered pins.

82

B. SPACE FLIGHT PREPARATION

The preparation of a satellite for space is filled with numerous questions. When

will the mission fly? Where will the mission fly? What systems are critical? What amount

of shielding will be around the SEE devices? In addition, what is the mission life? All of

these factors are critical in the selection of devices for a spacecraft and lead to a

prediction of the radiation environment of a mission. The purpose of this section is to

discuss some of the factors in the selection of components and design criteria.

1. Mission Parameters

As discussed in the background, the orbital parameters of a satellite decide the

radiation environment it will experience. This in turn impacts numerous factors in the

satellite design such as shielding thickness. The TMR system is destined to be a part of

the next Naval Postgraduate School Satellite design. Preliminary orbital parameters for

this satellite place it at an altitude of 800km, which is a Low Earth Orbit (LEO). The

harshest radiation environment encountered by satellites in a LEO is the high-energy

particles of the Van Allen Belt, which it will pass through numerous times each day. The

energies of the protons in the belts can range from KeV to hundreds of MeV. The level

of radiation flux experienced during of a satellite's life in the belt varies greatly with orbit

inclination and altitude. Flux is the flow of energy per unit time and per unit cross-

sectional area. At altitudes between 200 and 600-Km large increases in radiation flux

levels are seen as the altitude increases. Above 600 Km, the radiation flux increases

more gradually as altitude increases.

83

A LEO satellite, though subjected to the Van Allan belt, experiences a benefit

from its lower altitude, which is somewhat protected from cosmic rays and solar flares by

the earth's magnetic field. As the satellite altitude increases, the protection from these

particles decreases. The amount of protection the satellite receives from the earth's

magnetic field is also dependent on inclination. As the inclination of the satellite

increases above 45 degrees, the satellite orbit enters the Polar Regions more frequently,

which is beyond the magnetic field exposing it to the full effect of space radiation.

Utilizing this information, a Radiation Effects Engineer is able to proceed to the next step

in part selection, which is a radiation risk assessment.

2. Radiation Risk Assessment

A radiation risk assessment for any electronic components consists of the

calculation of total dose damage and SEU susceptibility of the device caused by the

predicted radiation environment of the spacecraft.

Knowing the orbit parameters allows the determination of the suitability of

electronic devices in their intended application, dependent on the radiation environment

to which the devices are subjected. Utilizing an altitude of 800 KM alone, a satellite will

experience a predicted radiation dose (called ionizing dose) rate of approximately one

krad (Si) per year. [Ref. 14]

An additional method available to predict the environment is the use of software

radiation environmental simulations. There are multiple software programs available for

the prediction of the SEE effects such as SpaceRad and Cosmic Ray Effects on Micro-

Electronics (CREME96). SpaceRad is a commercial program and a demonstration

84

version was unavailable for evaluation. CREME96 is a free program available at the

Naval Research Laboratory website. This program focuses on the prediction of the Single

Event Effects and determining SEU rates, but to accomplish this requires radiation

ground-test data on the devices. This software was utilized primarily to get a picture of

the environment that the spacecraft would be exposed to as a prelude to assist in device

selection.

CREME requires the user to input the orbit of the satellite and select the

environment, either quiescent or extreme solar events. This information is entered in a

User Request file. The orbital profile entered into the user request file an inclination of 30

degrees and at a perigee/apogee of 450 km. Figure 7.2 depicts fluxes of various elements,

atomic number Z=l (protons) to atomic number Z=8 (oxygen), vs. kinetic energy. For

example, using atomic number 7 (nitrogen) and breaking this element into species based

on kinetic energy. Then using the figure, the spacecraft would experience a flux of 10

from nitrogen elements with a kinetic energy of 1 MeV/nucleon. This allows an

evaluation of the ionizing radiation environment of different elements at the external

surface of the spacecraft for the orbital parameters specified. The recommendation for

SEE calculations is to consider elements up to atomic number 92. This was not done due

to the complexity of the figure. With this information, the user has the ability to

determine the amount of shielding required to protect the spacecraft. This will give a

jump off point for calculating SEU on different devices.

■6

85

10*
. 102

p -2

-4
^10

7 lo-6

n^

flO"10

^iO"14

lO"18

mT] 1—I I I I T 1 I I I I I 11 1 1 I I I 1 1 11

2

10 1 .0 10' 10" 10x 10" 10" 10'
Kinetic Energy (MeV/nucleon)

Figure 7.2. Differential Flux of various elements vs. Kinetic Energy at the external surface
of the spacecraft Z=l (protons) Z=8 (Oxygen)

3. Mission Specific

After mission planners and radiation effects engineers have planned the orbit

configuration, date of launch, mission life, and nominal shield thickness, an analysis

utilizing this data is performed. The first phase of this analysis is to decide on the SEU

requirement determined by the function of the device. The role of the device in the system

is critical to the analyses. The application of this process to the TMR system is vital. The

following sections will discuss design approaches that can be used to increase radiation

hardness and tolerance of the system to SEU.

86

a) Microprocessor

First and foremost in the design are the three IDT3081 microprocessors.

The microprocessor is the brain of the entire design and its correct function is essential.

Though, the TMR voting scheme protects the system from a propagating fault additional

protection is necessary to increase system reliability. Previous radiation testing

conducted on the IDT3081 concluded that the R3000 microprocessor could survive the

proton SEU environment. [Ref. 15] Later testing of the IDT3081 predicted a proton

upset rate per device of 1.4xl0~4 upsets/day with 60 mils of aluminum shielding. [Ref. 16]

The function of the TMR system would be degraded considerably if a

processor ceased functioning. In theory, if the other two processors still concur the

system would continue functioning properly. However, if the two processors disagree

and cause a voter interrupt, the system would be unable to determine the correct data.

The implementation of a watchdog program in the operating system of the

microprocessor is therefore essential. The watchdog timer is like an "I'm functioning"

method of error control. If this message is not received within a certain period of time, a

"time out" has occurred. The system will then perform some action such as a reset.

An additional method that can be implemented to increase system

reliability is the filling of unused RAM with software interrupts instructions. These

instructions would cause a graceful recovery if the processor jumped outside the

programmed memory area.

87

b) XILINXFPGA

The next major device section in the TMR design is the voters and system

controller FPGA. As stated earlier, the voter is the single point of failure in a TMR

system. An error in these devices would lead to faults permeating throughout the system.

The system controller performs the essential role of managing communication and

transfer of information. A possible error here is not as detrimental as in the voters, but

the communication function of this device is vital. The role of these devices in the design

calls for any and all protection. Therefore, the use of radiation-hardened components is

necessary and their use is seen as an essential cornerstone to the success of this design.

One of the key features of FPGAs is that they are reconfigurable. If a

design change is necessary during flight, then a new configuration can be loaded and the

functionality of the FPGA altered without having physical access. Unfortunately, this

increased flexibility results in a more involved designed solution for SEU effects.

The straightforward approach to SEU mitigation is to reconfigure the

FPGA upon detecting a system error or at specific time intervals. For example, an FPGA

utilized to control a spacecraft thermal control system experiences an SEU, causing the

FPGA to turn on the heater. If through onboard systems it can be determined the heater is

on inadvertently, a command could be sent to reconfigure the FPGA.

A second approach that can be utilized is the readback function. This

feature allows the reading of the state of every flip-flop and configuration cell within the

FPGA. This is a capability provided by the Xilinx FPGA. This function runs in the

background and does not affect the function of the FPGA. A CRC checksum calculated

88

from the readback bits is generated and inserted at the end of the bit stream. The

checksum is then compared to the expected checksum for the current configuration, if it

does not match, then an error has occurred. [Ref. 17]

c) Memory

The memory system is the next portion of the TMR design. This memory

system discussion includes both RAM and ROM. The validity of memory in any

computer system is of major concern. It stores and provides the data necessary for proper

functioning. There are some protections that can be implemented to the memory system

to increase reliability. The first would of course be an upgrade to a radiation-hardened

component. Possible choices for replacement devices are given in a later section. The

second is the addition of an Error Detection and Correction (EDAC) scheme such as

parity error or hamming code, which can be added to the overall system design. The

addition of EDAC can be accomplished in both software and hardware. The focus of the

following will be on hardware EDAC. Keep in mind the following is discussed only to

increase the overall reliability of the spacecraft. The TMR design is itself an Error

Detection and Correction method. The voting modules detect the error by the majority

vote and the error is corrected by only allowing the voted data pass.

EDAC is accomplished by the use of algorithms such as the Hamming

Code. The Hamming code is suitable for detecting single errors in a code. It functions by

encoding a block data with check code. The code is then check by the next unit and is

able to detect the position of a single error and the existence of more than one error. By

the determination of the position of the error, it is then possible to correct that error. The

89

level of EDAC protection desired determines the number of check word bits per data

word. For example, providing single bit error correction with dual bit error detection to

eight to fifteen data bit requires five check bits.

An EDAC IC functions by storing a check word in memory with the data

word. During a read operation, the data word and corresponding check word are retrieved

from memory. The EDAC IC generates a new check word determined by the data from

memory and compares it to the check word stored in memory. If the two check words are

identical, the data word is correct. If the check words are different, an error has been

detected. Single-bit error corrections with dual-bit error detection ICs are available

commercially. The placing of an EDAC component on the bus lines from the memory

would force all data used by the microprocessor to pass through this device.

Another method of hardware EDAC that is quite common is parity.

Parity, being a single bit at the end of a structure, simply indicates whether an odd

number or an even number of ones was in that structure. This method detects an error if

an odd number of bits are in error, but if an even number of errors occurs, the parity is

still correct. For example, the parity is the same whether zero or two errors occur.

Additionally, notice that this is a detect-only method of mitigation and does not attempt

to correct the error. Therefore, an additional algorithm, such as Manchester-encoding, is

also utilized. This encoding detects if the data is in the proper format. Parity

generator/checker ICs are commercially available.

These EDAC methods, such as the Hamming code, are more efficient than

TMR. They do have a downfall, which is they are very hardware intensive. For

90

example, the addition of an EDAC IC to the TMR design would introduce seven bits of

additional data for each 32 bits of data. This would in turn require additional memory

hardware components be added to the design to store this additional data.

d) Serial EEPROM

The serial EEPROM is in a separate category from the other memory

devices. The EEPROM is utilized only in the programming of the FPGA. The

programming of a device in space is problematic, increasing the chance of error in the

program. As shown in the following section no radiation data was found on serial

EEPROM. A small cross-section and susceptibility to SEU limit their use in space. The

removal of this part and one time programming of the FPGA defeats the purpose of

utilizing an FPGA.

An alternative that needs to be discussed is use of ASIC designs for a

satellite. Programmable logic has the advantage over the ASIC in reduced cost and faster

design time. The use of an ASIC also defeats the purpose of using a FPGA, the benefit of

allowing on-orbit design changes. This flexibility allows a mission to adapt to changing

requirements.

e) FIFO

The FIFOs in the TMR design are grouped into three banks of five for

each microprocessor. The need for the FIFOs in a space flight board depends on the

function of the board. If the desire is to later analyze data to discover the location of the

fault then FIFOs are necessary. If on the other hand, the desire is to put a functional

system board and not analyze the data, but just the performance of the system in response

91

to faults then the FIFOs can be removed. The FIFOs' only function is the collection and

transfer of data after a vote interrupt. Therefore, the device performs an important but not

essential analytical function. The current FIFOs are 1024X8, which is a common size for

a bus. A design change that would improve reliability is the changing of these devices to

9-bit wide ICs. This ninth bit would enable the use of parity thus enabling detection of

single bit errors.

f) Assorted

The remaining components on the board consist of address latches and

buffer/drives. These components play an important role in any design. There is enough

current data on the non-radiation hardened components provided in Appendix D that use

is justified. The oscillators are the only remaining component not touched upon in the

previous sections. The use of a radiation tolerant oscillator is not only recommended but

also necessary for the design. The clock signal is the most important signal in the entire

design. It synchronizes the voters and provides a reference signal to the processors.

C. PART SELECTION

The next step in the transition process is to take the components list and search for

radiation testing data on the devices. There are numerous Radiation Data Banks on the

Internet for example ERRIC/DASIAC and the Goddard Space Flight Center both

maintain radiation test lists. In searching for the devices or compatible devices to limit

design changes, the information at these databases was lacking. None of the devices

utilized in the design and very few comparable devices were found. The earliest database

entries that were found on device testing is 1997 and that was on devices manufactured

92

two to three years previously. This information offered little assistance in device

selection.

Next in the process was a search for radiation-hardened devices at companies such

as UTMC and Honeywell. To qualify as a radiation-hardened device the manufacture has

to guarantee operation at 20 krad. Hardness is simply a measure of the total dose of

radiation to which an IC can be subjected before critical parameters cross a predefined

threshold.

The designer has to keep in mind the most cost efficient method for meeting the

SEU requirement is to make an appropriate combination of SEU-hard devices and other

factors. The radiation devices though meeting mission parameters for radiation tolerance

consume a large portion of energy. Appendix D gives a part breakdown of available

radiation hardened compatible devices and their cost. It additionally lists suitable COTS

devices and the radiation testing data available on the device.

93

THIS PAGE INTENTIONALLY LEFT BLANK

94

VIII. CONCLUSIONS AND FOLLOW-ON RESEARCH

The previous chapter provided preliminary design considerations for a space flight

design. This chapter will present the conclusion drawn from the project and areas for

follow-on work.

A. CONCLUSIONS

During this project, a fabricated TMR board design was modified, finished and

tested. The design was expanded with the addition of a voltage regulator for the FPGAs.

The UART was swapped for a newer version. The programming and addition of the

system controller to the design enables the system to transfer data to the HCI. Burning

programs into the ROM devices and capturing execution data on a digital logic analyzer

tested the design. Finally, the research focused on the preliminary design requirements

for a space flight board.

The data captured by the logic analyzer and presented in Chapter V demonstrated

the conceptual and hardware implementation of the TMR concept to be valid. The

measured waveforms agreed with the predicted waveforms presented in Reference 2.

This research advanced the project by correcting and completing the hardware design,

designing and executing test programs, and verifying the design worked as anticipated.

B. FOLLOW-ON RESEARCH

The advancement of this project one step further creates additional paths of

follow-on research. This section discusses some of the areas where follow-on research is

recommend.

95

1. Completion of TMR Implementation

Given that the hardware is completed, the system is ready for software integration,

which consists of two parts, the O/S and the HCI, which are detailed in Ref. 3. The

VxWorks O/S previously constructed requires testing and installation onto the EPROMs.

The TMR system would next be connected to a computer running the HCI. The

implementation of the HCI will communicate to the TMR board via two serial cables.

The handshaking between the HCI and hardware needs to be tested to ensure the

communication paths are operating accurately and the data format being transmitted is

correct. When these objectives are fulfilled, the system will be a fully functional TMR

system that is able to detect and correct single errors in any of the processors and provide

the data corresponding to that error to the HCI for analysis. The TMR system is then set

for radiation testing and modifications for other uses.

2. Radiation Testing

The completion of the software and hardware integration will lead to the radiation

testing of the design. This testing will investigate the survivability of the COTS devices

utilized on the board and the ability of the design to handle SEUs. The test facility that

will most likely be utilized for this is the cyclotron at the University of California at

Davis. Additionally, the Naval Research Laboratory will allow utilization of a laser to

implement SEU. The laser requires exact precision to impact registers on the devices

tested.

96

APPENDIX A UPDATED TMR PLD FILES

Name MemCont;
PartNo ATF22V10C-7PC ;
Created Date 5/27/00 ;
Revision 02 ;
Designer David Summers ;
Modified by Damen Hofheinz;
Company NPS ;
Assembly TMR R3081 ;
Location U54 ;
Device g22vl0;

/* *********************** INPUT PINS **************************/

PIN 1 = SYSCLK; /* SYSCLK FR CPUA */
PIN 2 = INTCSN; /* INTERRUPT CHIP SELECT */
PIN 3 = RAMCSN; /* SRAM CHIP SELECT */
PIN 4 = TMERCSN; /* TIMER CHIP SELECT */
PIN 5 = UARTCSN; /* UART CHIP SELECT */
PIN 6 = EPROMCSN; /* EPROM CHIP SELECT */
PIN 7 = VOTBURSTN; /* VOTED BURST READIWR1TE NEAR */
PIN 8 = VOTRDN; /* VOTED READ */
PIN 9 = VOTWRN; /* VOTED WRITE */
PIN 10 = CVOTERR; /* CONTROL VOTER ERROR */
PIN 11 = DVOTERR; /* DATA VOTER ERROR */
PIN 13 = RESETN; /* SYNCHRONOUS SYSTEM RESET */
PIN 19 = AVOTERR; /* ADDRESS VOTER ERROR */

/* *********************** OUTPUT PINS *************************/

PIN [14,15,16,17] = [COUNT3..0]; /* WAIT STATE GENERATOR */
PIN 18 = CYCENDN; /* CYCLE END SIGNAL */
PIN 20 = BUSERRN; /* BUS ERROR SIGNAL TO CPU */
PIN21=ACKN; /* ACK SIGNAL TO CPU */
PIN 22 = RDCENN; /* READ CLOCK ENABLE TO CPU */
PIN 23 = VOTINTN; /* VOTER INTERRUPT TO CPU */

/******************* CONSTANT DEFINITIONS *******************/
$DEFINELOW BX)
$DEFINEHIGHB'l

97

/********************** LOGIC EOUATIONS ************************/

/* */

/* WATT STATE COUNTER COUNT[3..0] */
/* */

/*THE PURPOSE OF THE WAIT STATE COUNTER IS TO PROVIDE */
PREFERENCE FOR THE MEMORY CONTROLLER SIGNALS. IT */
/*STARTS COUNTING WHEN A READ OR WRITE CYCLE IS INITIATED */
/*AND RESETS WHEN THERE IS A RESET OR CYCLE ENDSIGNAL. */
/*THE COUNTER USES THE SYSCLK AS ITS REFERENCE CLOCK. */

COUNTO.D = RESETN & CYCENDN & (IVOTRDN # IVOTWRN) &
(COUNTO $ HIGH);

COUNTl.D = RESETN & CYCENDN & (IVOTRDN # IVOTWRN) &
(COUNT 1 $ COUNTO);

COUNT2.D = RESETN & CYCENDN & (IVOTRDN # IVOTWRN) &
(COUNT2 $ (COUNT 1 & COUNTO));

COUNT3.D = RESETN & CYCENDN & (IVOTRDN # IVOTWRN) &
(COUNT3 $ (COUNT2 & COUNT1 & COUNTO));

COUNT0.OE=HIGH;
COUNT1.0E = HIGH
COUNT2.0E = HIGH
COUNT3.0E = HIGH

COUNTO. AR = LOW
COUNTl.AR = LOW
COUNT2.AR = LOW
COUNT3.AR = LOW

COUNTO.SP = LOW
COUNTl.SP = LOW
COUNT2.SP = LOW
COUNT3.SP = LOW

FIELD CNTR = [COUNT3, COUNT2, COUNT1, COUNTO];

98

/* */

/* CYCLE END SIGNAL */
/* */

/* THE PURPOSE OF THE CYCLE END SIGNAL IS TO SIGNAL THE END */
/* OF THE OF THE CURRENT BUS CYCLE IN ORDER TO RESET */
/* THE COUNTER. THIS RESETS ITSELF BY INCLUDING A REFERENCE*/
/*TO ITSELF IN THE EQUATIONS. */

CYCENDN.D = !(RESETN & CYCENDN & (
(1RAMCSN & (CNTR : HD) & IVOTRDN & VOTBURSTN)

(1RAMCSN & (CNTR : H'6) & IVOTRDN & !VOTBURSTN)
(IRAMCSN & (CNTR : HD) & 1VOTWRN)
(1EPROMCSN & (CNTR : H'l) & !VOTRDN & VOTBURSTN)
(IEPROMCSN & (CNTR : H7) & IVOTRDN & ! VOTBURSTN)
(IUARTCSN & (CNTR : HD) & VOTBURSTN)
(ITIMERCSN & (CNTR : HD) & VOTBURSTN)
(IINTCSN & (CNTR : HD) & VOTBURSTN)
(CNTR: HE)
));

CYCENDN.AR = LOW;
CYCENDN.SP = LOW;

/* */

/* READ CLOCK ENABLE */
/* */

/* THE READ CLOCK ENABLE SIGNAL IS USED BY THE CPU TO */
/* STROBE DATA OFF THE DATA BUS INTO ITS READ BUFFER. THIS */
/* SIGNAL IS STROBED ONE TIME FOR SINGLE READS AND FOUR */
/* TIMES FOR QUAD READS. ONLY RAM AND EPROM MEMORY */
/*USE THE QUAD WORD READS. */

RDCENN.D = !(RESETN & CYCENDN & IVOTRDN & (

(!RAMCSN&(
(CNTR : HD)

(!VOTBURSTN & (CNTR : H2))

99

(IVOTBURSTN & (CNTR : H'4))
(IVOTBURSTN & (CNTR : H'6))
)

)
#(!EPROMCSN&(

(CNTR:H'l)
(IVOTBURSTN & (CNTR : H3))
(IVOTBURSTN & (CNTR : H'5))
(IVOTBURSTN & (CNTR : H7))
)

)
(IUARTCSN & (CNTR : WO))
(ITIMERCSN & (CNTR : HD))
(IINTCSN & (CNTR : Hfl))

));
RDCENN.AR = LOW;
RDCENN.SP = LOW;

/* */
I* ACKNOWLEDGE */
/* */
/* THE ACKNOWLEDGE SIGNAL IS USED BY THE MEMORY SYSTEM */
/* TO LET THE CPU KNOW THAT IT HAS PROCESSED THE WRITE */
I* CYCLE SUFFICIENTLY AND THE CPU MAY MOVE ON TO THE */
/* NEXT CYCLE. THIS SIGNAL IS GENERATED IMPLICITLY ON */
/* SINGLE DATUM READS AND NO SOONER THAN FOUR CLOCKS */
/* BEFORE THE END OF THE LAST READ FOR BURSTS. */

ACKN.D = !(RESETN & CYCENDN & (
(IRAMCSN & IVOTWRN & (CNTR : HD))

(IRAMCSN & 1VOTRDN & IVOTBURSTN & (CNTR : H3))
(IEPROMCSN & 1VOTRDN & IVOTBURSTN & (CNTR : H'4))
(1UARTCSN & 1VOTWRN & VOTBURSTN & (CNTR : HD))
(ITIMERCSN & IVOTWRN & (CNTR : HD))
(IINTCSN & IVOTWRN & (CNTR : HD))

)
);

ACKNAR = LOW;
ACKN.SP = LOW;

100

/***=(:*********************/

CHANGE MADE IN THIS SECTION
BUS ERROR

*/
*/
*/
*/
*/
*/
*/
*/

BUSERRN.D = !(RESETN & CYCENDN & (CNTR : THE));
BUSERRN.AR = LOW;
BUSERRN.SP = LOW;

/*
/*
/*
I* THE BUS ERROR SIGNAL IS USED BY THE PROCESSOR TO END
/* A BUS CYCLE THAT TRIES TO ACCESS AN ADDRESS THAT IS
/* NOT POPULATED IN THE MEMORY SPACE.
/*
/* CHANGED COUNTER FROM H'F TO HE'.

/* */

/* VOTER INTERRUPT SIGNAL
/*
/* THE VOTER INTERRUPT SIGNAL INFORMS THE CPU WHEN
/* A MISCOMPARE HAPPENS IN ONE OF THE FPGAS. THE SIGNAL IS
/* HELD UNTIL AINTCSN IS GENERATED BY THE ADDRESS
/*DECODER.

*/
*/
*/
*/
*/
*/

VOTINTN.D = !((AVOTERR # CVOTERR # DVOTERR # IVOTINTN) & INTCSN);
VOTINTN.AR = LOW;
VOTINTN.SP = LOW;

SYSCLK 1
INTCS" 2
RAWCS" 3
TIMERCS- 4
UARTCS- 5
EPROMCS- 6
VÖTBURST- 7
VÖTRD" 8
VÖTWR" 9
CVOTERR 10
DVCTERR 11
RESET- 13

23

17
16
15
14 -X

VOTNT
22 RDCEN-
21 ACK*
20 BU5ERR-
19 AVÖTERR
18 CYCEND"

ATF22V10C-5JC
DIP.100/24/W.300/L1.175

Figure A.l MEMCONT PLD

101

SYSCLK 1
VÖTRD- 2
VÖTWR* 3
CYCEND- 4

5
VOTBHT 6
VÖTBEr 7
VÖTBE2' 8
VÖTBE3- 9

10
11

SYS_RESET 13

U£5
23 RESET
22 RESET
21 «
20 A WRENA*
19 WRENB-
18 WRENC-
17 WREW
16 RDEN'
15 WRDATABNJ

14 RDDATAEN-

ATF22V10C-5JC
DIP.10 0/24/W.300/L1.17 5

Figure A.2 MEMENABLE PLD

102

APPENDIX B TMR SYSTEM CONTROLLER FILES

This appendix contains the HDL code for the TMR system controller FPGA.

Table B.l. Lists the state machines in this appendix and the page they appear on.

File and Description Page Number
File : UARTC.V 104
File: VOTMACH.V 109
File: CONTROLLER.V 112
File: COLLCT.V 124
File: MODECNTRL.V 126

Table B.l. TMR Files

103

// Author: Damen Hofheinz
// UARTCv
// created: 08/16/00 21:30:48
// INPUTS: CLK
// OUTPUTS: CUARTCSN, UARTEN, CUWREN, CTRLDATAU[7:0]
// CTRLADDR[2:0]
// INTERNAL SIGNALS:

module Uartc (CLK, CTRLADDR, CTRLDATAU, CUARTCSN, CUWREN,
UARTEN);

input CLK;
output [2:0]CTRLADDR;
output [7:0]CTRLDATAU;
output CUARTCSN;
output CUWREN;
output UARTEN;

reg [2:0]CTRLADDR, next_CTRLADDR;
reg [7:0]CTRLDATAU, next_CTRLDATAU;
reg CUARTCSN, next_CUARTCSN;
reg CUWREN, next_CUWREN;
reg UARTEN, next_UARTEN;

// USER DEFINED ENCODED state machine: UARTC
parameter SO = 5t>00000,

SI =51)00001,
S10 = 51)01010,
51 1=51)01011,
512 = 51)01100,
513 = 51)01101,
514 = 51)01110,
515 = 51)01111,
516 = 51)10000,
517 = 51)10001,
52 = 51)00010,
S2a = 51)10010,
s3 = 5b00011,
54 = 51)00100,
55 = 51)00101,
56 = 5000110,
57 = 51)00111,
58 = 51)01000,

104

S9 = 51)01001;
reg [4:0]CurrState_SregO, NextState_SregO;

// Diagram actions (continuous assignments allowed only: assign ...)
//diagram ACTIONS;

// Machine: SregO

// NextState logic (combinatorial)
always @ (CurrState_SregO)
begin

case (CurrState_SregO) // synopsys parallel_case full_case
SO:
begin

begin
NextState_SregO = Sl;

end
end
SI:
begin

begin
NextState_SregO = S2;
next_CUWREN=l;
next_CUARTCSN = 0;
next_UARTEN = 0;

end
end
S10:
begin

begin
NextState_SregO = Sll;
next_CUWREN = 0;

end
end
Sll:
begin

begin
NextState_SregO = SI 2;
next_CUWREN=l;

end
end
S12:
begin

begin

105

NextState_SregO = S13;
next_CTRLADDR = 31)001;
next_CTRLDATAU = 81)00000000;

end
end
S13:
begin

begin
NextState_SregO = S14;
next_CUWREN = 0;

end
end
S14:
begin

begin
NextState_Sreg0 = S15;
next_CUWREN=l;

end
end
S15:
begin

begin
NextState_SregO = S16;
next_CUARTCSN=l;
next_UARTEN=l;

end
end
S16:
begin

begin
NextState_SregO = S17;

end
end
S17:
begin

begin
NextState_SregO = S17;

end
end
S2:
begin

next_CTRLADDR = 31)010;
next_CTRLDATAU = 81)10000000;
begin

106

NextState_SregO = S2a;
end

end
S2a:
begin

next_CUWREN = 0;
begin

NextState_SregO = s3;
end

end
s3:
begin

begin
NextState_SregO = S4;
next_CTRLADDR = 3b011;
next_CTRLDATAU = 8b 11000001;
next_CUWREN=l;

end
end
S4:
begin

begin
NextState_SregO = S5;
next_CUWREN = 0;

end
end
S5:
begin

begin
NextState_Sreg0 = S6;
next_CUWREN=l;

end
end
S6:
begin

begin
NextState_Sreg0 = S7;
next_CTRLADDR = 3bl00;
next_CTRLDATAU = 8bl 1000100;

end
end
S7:
begin

begin

107

NextState_SregO = S8;
next_CUWREN=l;

end
end
S8:
begin

begin
NextState_SregO = S9;
next_CUWREN = 0;

end
end
S9:
begin

begin
NextState_Sreg0 = S10;
next_CTRLADDR = 3b000;
next_CTRLDATAU = 8b01001000;

end
end

endcase
end

// Current State Logic (sequential)
always @ (posedge CLK)
begin

CurrState_SregO <= NextState_SregO;
end

// Registered outputs logic
always @ (posedge CLK)
begin

CUWREN <= next_CUWREN;
CUARTCSN <= next_CUARTCSN;
UARTEN <= nextJJARTEN;
CTRLADDR <= next_CTRLADDR;
CTRLDATAU <= next_CTRLDATAU;

end

endmodule

108

// Author: Damen Hofheinz
// File: votmch.v
// created: 08/12/00 21:44:07
// INPUTS: CLK, CUARTINT, CPUDONE, INTCSN
// OUTPUTS: UARTINT, INTRCNTR[3:0]
// INTERNAL SIGNALS: NONE

module votmch (CLK, CPUDONE, CUARTINT, INTCSN, INTRCNT,
UARTINT);

input CLK;
input CPUDONE;
input CUARTINT;
input INTCSN;
output [3:0]INTRCNT;
output UARTINT;

reg [3:0]INTRCNT, next_INTRCNT;
reg UARTINT, nextJJARTINT;

// USER DEFINED ENCODED state machine: SregO
parameter SI =2t>00,

52 = 2b01,
53 = 21310,
84 = 21)11;

reg [l:0]CurrState_SregO, NextState_SregO;

// Diagram actions (continuous assignments allowed only: assign ...)
//diagram ACTIONS;

// Machine: SregO

// NextState logic (combinatorial)
always @ (CPUDONE or CUARTINT or INTCSN or CurrState_SregO)
begin

case (CurrState_SregO) // synopsys parallel_case full_case
SI:
begin

if(IINTCSN)
begin

NextState_SregO = S2;
end
else if (CUARTINT && IINTRCNT)
begin

109

end

end
S2:
begin

end
S3:
begin

end
S4:
begin

end
endcase

NextState_SregO = S4;
end
elseif(INTRCNT)
begin

NextState_SregO = S3;
end

if (INTCSN)
begin

NextState_SregO = Sl;
next_INTRCNT = INTRCNT+1;

end

if (CPUDONE)
begin

NextState_SregO = Sl;
next_INTRCNT = INTRCNT-1;

end

next_UARTINT=l;
if(!CUARTINT)
begin

NextState_SregO = Sl;
next_UARTINT = 0;

end

// Current State Logic (sequential)
always @ (posedge CLK)
begin

CurrState_SregO <= NextState_SregO;
end

// Registered outputs logic
always @ (posedge CLK)
begin

110

INTRCNT <= nextJNTRCNT;
UARTINT <= nextJJARTINT;

end

endmodule

111

// Author: Damen Hofheinz
// cntroller.v
// created: 08/12/00 21:34:37
// INPUTS: SYSCLK, INTCNTR[3:0]
//OUTPUTS: PROCXFER, FIFO CTRL A [9:0], FIFOCTRLB[9:0],
//FIFOCTRLC[9:0], FWRCLK1, HDREN, CTRLDATAV[7:0], CUWREN,
//CUARTCSN, CUARTADSN, CTRLADDR[2:0] XFERCOMP
//INTERNAL SIGNALS: FIFOENGA, FIFOENGB, FIFOENGC,
//FIFOCOMP, FIFOHDR[7:0], CPUHDR[1:0], HDONE, BYTCNT[7:0]
//CPUCNT[1:0]

module cntroller (CTRLADDR, CTRLDATAV, CUARTADSN, CUARTCSN,
CURDEN, FIFOCTRLA, FIFOCTRLB, FEFOCTRLC, FWRCLK1, HDREN, INTCNTR,
PROCXFER, SYSCLK, XFERCOMP);

input [3:0]INTCNTR;
input SYSCLK;
output [2:0]CTRLADDR;
output [7:0]CTRLDATAV;
output CUARTADSN;
output CUARTCSN;
output CURDEN;
output [9:0]FIFOCTRLA;
output [9:0]FIFOCTRLB
output [9:0]FIFOCTRLC
output FWRCLK1;
output HDREN;
output PROCXFER;
output XFERCOMP;

reg [2:0]CTRLADDR, next_CTRLADDR;
reg [7:0]CTRLDATAV, next_CTRLDATAV;
reg CUARTADSN, next_CUARTADSN;
reg CUARTCSN, next_CUARTCSN;
reg CURDEN, next_CURDEN;
reg [9:0]FIFOCTRLA, next_FIFOCTRLA;
reg [9:0]FIFOCTRLB, next_FIFOCTRLB;
reg [9:0]FIFOCTRLC, next_FEFOCTRLC;
reg FWRCLK1, next_FWRCLKl;
reg HDREN, next_HDREN;
reg PROCXFER, next_PROCXFER;
reg XFERCOMP, next_XFERCOMP;

// diagram signal declarations

112

reg [7:0]BYTCNT, next_BYTCNT;
reg [l:0]CPUCNT,next_CPUCNT;
reg [l:0]CPUHDR,next_CPUHDR;
reg FIFOCOMP, next_FEFOCOMP;
reg FFOENGA, next_FIFOENGA;
reg FIFOENGB, next_FIFOENGB;
reg FIFOENGC, next_FIFOENGC;
reg [7:0]FIFOHDR, next_FIFOHDR;
reg HDONE, next_HDONE;

// USER DEFINED ENCODED state machine: SregO
parameter XFERP = l'bl,

XFERSTRT=lbO;
reg CurrState_SregO, NextState_SregO;

// USER DEFINED ENCODED state machine: Sregl
parameter CPU A = 31)001,

CPUB = 31)010,
CPUC = 31)011,
DONE = 31)100,
STRT = 31)000,
WAITST = 31)101;

reg [2:0]CurrState_Sregl, NextState_Sregl;

// USER DEFINED ENCODED state machine: Sreg2
parameter FIFOSTO = 31)001,

FIF0ST1= 31)010,
FIFOST2 = 31)011,
FIFOST3 = 31)100,
FIFOST4 = 31)101,
FIFOSTART = 31)000;

reg [2:0]CurrState_Sreg2, NextState_Sreg2;

// USER DEFINED ENCODED state machine: Sreg3
parameter BTYE5 = 41)0110,

BYTE10 = 41)1011,
BYTE2 = 41)0001,
BYTE3 = 41)0010,
BYTE4 = 41)0100,
BYTE6 = 41)0111,
BYTE7= 41)1000,
BYTE8 = 41)1001,
BYTE9 = 41)1010,
BYTSTRT = 41)0000,

113

SI =4^1100;
reg [3:0]CurrState_Sreg3, NextState_Sreg3;

//Machine: VOTE
// NextState logic (combinatorial)
always @ (INTCNTR or CurrState_SregO)
begin

case (CurrState_SregO) // synopsys parallel_case full_case
XFERP:
begin

if(XFERCOMP)
begin

NextState_SregO = XFERSTRT;
end

end
XFERSTRT:
begin

nextJPROCXFER = 0;
if (INTCNTR)
begin

NextState_SregO = XFERP;
next_PROCXFER = 1;

end
elseif(!INTCNTR)
begin

NextState_SregO = XFERSTRT;
end

end
endcase

end

// Current State Logic (sequential)
always @ (posedge SYSCLK)
begin

CurrState_SregO <= NextState_SregO;
end

// Registered outputs logic
always @ (posedge SYSCLK)
begin

PROCXFER <= next_PROCXFER;
end

114

// Machine: CPU
// NextState logic (combinatorial)
always @ (INTCNTRorCurrState_Sregl)
begin

case (CurrState_Sregl) // synopsys parallel_case full_case
CPUA:
begin

if(CPUCNT==2b01)
begin

NextState_Sregl = CPUB;
next_CPUHDR[l:0] = 2b01;
next_FIFOENGB=l;
next_FIFOENGA = 0;

end
end
CPUB:
begin

if(CPUCNT==2'blO)
begin

NextState_Sregl = CPUC;
next_CPUHDR[l:0] = 2^10;
next_FIFOENGC=l;
next_FIFOENGB = 0;

end
end
CPUC:
begin

if(CPUCNT==2bll)
begin

NextState_Sregl = DONE;
next_FIFOENGC = 0;
next_XFERCOMP=l;

end
end
DONE:
begin

begin
NextState_Sregl = WAITST;

end
end
STRT:
begin

next_CPUHDR[l:0] = 2b 11;
if(PROCXFER==l)

115

begin
NextState_Sregl = CPUA;
next_FIFOENGA=l;
next_CPUHDR[l:0] = 2TD00;

end
end
WAITST:
begin

begin
NextState_Sregl = STRT;

end
end

endcase
end

// Current State Logic (sequential)
always @ (posedge SYSCLK)
begin

CurrState_Sregl <= NextState_Sregl;
end

// Registered outputs logic
always @ (posedge SYSCLK)
begin

XFERCOMP <= next_XFERCOMP;
CPUHDR <= next_CPUHDR;
FIFOENGB <= next_FIFOENGB;
FIFOENGA <= next_FIFOENGA;
FIFOENGC <= next_FIFOENGC;

end

// Machine: FIFOXFER
// NextState logic (combinatorial)
always @ (INTCNTR or CurrState_Sreg2)
begin

case (CurrState_Sreg2) // synopsys parallel_case full_case
FIFOSTO:
begin

if (FIFOENGC==l &&HDONE==l &&FFOCOMP)
begin

NextState_Sreg2 = FIFOST1;

116

next_FIFOCTRLC[9:0] = lObl 100111111;
nextJFIFOHDR = 8^00000100;

end
else if (FIFOENGB==l && HDONE==l && FIFOCOMP)
begin

NextState_Sreg2 = FFOST1;
next_FIFOCTRLB[9:0] = 101)1100111111;
next_FIFOHDR = 81)00000100;

end
else if (FIFOENGA==l && HDONE==l && FIFOCOMP)
begin

NextState_Sreg2 = FIFOST1;
next_FIFOCTRLA[9:0] = 10bl 100111111;
next_FIFOHDR = 81)00000100;

end
elseif(FIFOCOMP!=l)
begin

NextState_Sreg2 = FIFOST0;
next_FIFOHDR = 8bl 1000000;

end
end
FIFOST1:
begin

if (FIFOENGA==l && HDONE && FIFOCOMP)
begin

NextState_Sreg2 = FIFOST2;
next_FIFOCTRLA[9:0] = lObl 111001 111;
next_FIFOHDR = 8b00001000;

end
else if (FIFOENGB==l && HDONE && FIFOCOMP)
begin

NextState_Sreg2 = FEFOST2;
next_FIFOCTRLB[9:0] = lObl 111001 111;
next_FIFOHDR = 8b00001000;

end
else if (FIFOENGC==l && HDONE && FIFOCOMP)
begin

NextState_Sreg2 = FIFOST2;
next_FIFOCTRLC[9:0] = lObl 111001 111;
next.FIFOHDR = 81)00001000;

end
else if (FIFOCOMP !=1)
begin

NextState_Sreg2 = FIFOST1;

117

next_FIFOHDR = 81)00000100;
end

end
FIF0ST2:
begin

if (FIFOENGA==l && HDONE && FIFOCOMP)
begin

NextState_Sreg2 = FBFOST3;
next_FIFOCTRLA[9:0] = lCbl 111110011;
next_FIFOHDR = 81)00001100;

end
else if (FIFOENGB==l && HDONE && FIFOCOMP)
begin

NextState_Sreg2 = FBFOST3;
next_FIFOCTRLB[9:0] = 101)1111110011;
next_FEFOHDR = 81)00001100;

end
else if (FIFOENGC==l && HDONE && FIFOCOMP)
begin

NextState_Sreg2 = FIFOST3;
next_FIFOCTRLC[9:0] = 101)1111110011;
next_FIFOHDR = 81)00001100;

end
else if (FIFOCOMP !=1)
begin

NextState_Sreg2 = FIFOST2;
next_FIFOHDR = 81)00001000;

end
end
FIFOST3:
begin

if (FIFOENGC==l && HDONE && FIFOCOMP)
begin

NextState_Sreg2 = FBFOST4;
next_FIFOCTRLC[9:0] = 101)1111111100;
next_CPUCNT = CPUCNT+1;

end
else if (FIFOENGA==l && HDONE & FIFOCOMP)
begin

NextState_Sreg2 = FIFOST4;
next_FIFOCTRLA[9:0] = 101)1111111100;
next_CPUCNT = CPUCNT+1;

end
else if (FIFOENGB==l && HDONE && FIFOCOMP)

118

begin
NextState_Sreg2 = FIF0ST4;
next_FIFOCTRLB[9:0] = 101)1111111100;
next_CPUCNT = CPUCNT+1;

end
elseif(FIFOCOMP!=l)
begin

NextState_Sreg2 = FIFOST3;
next_FIFOHDR = 8t>00001100;

end
end
FIFOST4:
begin

if (CPUCNT==2'bl 1 && FIFOCOMP==l)
begin

NextState_Sreg2 = FIFOSTART;
end
else if (CPUCNT 1=21)11 && FIFOCOMP==l)
begin

NextState_Sreg2 = FIFOSTART;
end

end
FIFOSTART:
begin

if (FIFOENGC==l && HDONE)
begin

NextState_Sreg2 = FIFOST0;
next_FIFOCTRLC[9:0] = 101)0011111111;
next_FIFOHDR = 81)1 1000000;

end
else if (FIFOENGA==l && HDONE)
begin

NextState_Sreg2 = FIFOST0;
next_FIFOCTRLA[9:0] = lObOOl 1111111;
next_FIFOHDR = 8bl 1000000;

end
else if (FIFOENGB==l && HDONE)
begin

NextState_Sreg2 = FIFOSTO;
next_FIFOCTRLB[9:0] = 101)0011111111;
next_FIFOHDR = 81)1 1000000;

end
end

endcase

119

end

// Current State Logic (sequential)
always @ (posedge SYSCLK)
begin

CurrState_Sreg2 <= NextState_Sreg2;
end

// Registered outputs logic
always @ (posedge SYSCLK)
begin

FIFOCTRLC <= next_FEFOCTRLC;
FEFOCTRLB <= next_FIFOCTRLB;
FDFOCTRLA <= next_FIFOCTRLA;
FEFOHDR <= nextJFIFOHDR;
CPUCNT <= next_CPUCNT;

end

// Machine: BYTE
// NextState logic (combinatorial)
always @ (INTCNTR or CurrState_Sreg3)
begin

case (CurrState_Sreg3) // synopsys parallel_case full_case
BTYE5:
begin

begin
NextState_Sreg3 = BYTE6;
next_FWRCLKl = 0;
next_HDREN = 0;
next_HDONE=l;

end
end
BYTE10:
begin

begin
NextState_Sreg3 = BYTE7;
next_BYTCNT = BYTCNT+1;
next_FWRCLKl = 0;

end
end
BYTE2:
begin

next_CUARTCSN=l;
next_CTRLADDR[2:0] = 31)000;

120

begin
NextState_Sreg3 = BYTE3;

end
end
BYTE3:
begin

next_CUARTADSN=l;
begin

NextState_Sreg3 = BYTE4;
next_CTRLDATAV = CPUHDRIFIFOHDR;
next_HDREN=l;
next_FWRCLKl = 0;

end
end
BYTE4:
begin

next_CURDEN=l;
nextJFWRCLKl = 1;
begin

NextState_Sreg3 = BTYE5;
next_BYTCNT=l;

end
end
BYTE6:
begin

begin
NextState_Sreg3 = BYTE7;
next_FIFOCOMP = 0;

end
end
BYTE7:
begin

next_FWRCLKl = 1;
next_HDONE = 0;
begin

NextState_Sreg3 = BYTE8;
end

end
BYTE8:
begin

begin
NextState_Sreg3 = BYTE9;
next_BYTCNT = BYTCNT+1;
next_FWRCLKl = 0;

121

end
end
BYTE9:
begin

if (BYTCNT==8'b01010010)
begin

NextState_Sreg3 = Sl;
next_FIFOCOMP = 1;
next_FWRCLKl = l;

end
else if (BYTCNT<8'b01010010)
begin

NextState_Sreg3 = BYTE 10;
next_FWRCLKl = 1;

end
end
BYTSTRT:
begin

next_CUARTCSN = 0;
next_CUARTADSN = 0;
next_CURDEN = 0;
if (FffOENGAIIFIFOENGBIIFIFOENGC)
begin

NextState_Sreg3 = BYTE2;
next_BYTCNT = 0;

end
end
SI:
begin

begin
NextState_Sreg3 = BYTSTRT;

end
end

endcase
end

// Current State Logic (sequential)
always @ (posedge SYSCLK)
begin

CurrState_Sreg3 <= NextState_Sreg3;
end

// Registered outputs logic
always @ (posedge SYSCLK)

122

begin
FWRCLK1 <= nextJFWRCLKl;
HDREN <= next_HDREN;
CUARTCSN <= next_CUARTCSN;
CTRLADDR <= next_CTRLADDR;
CUARTADSN <= next_CUARTADSN;
CTRLDATAV <= next_CTRLDATAV;
CURDEN <= next_CURDEN;
HDONE <= next_HDONE;
BYTCNT <= next_BYTCNT;
FIFOCOMP <= next_FIFOCOMP;

end

123

// Author: Damen Hofheinz
// File: Collct.v
// created: 08/12/00 21:37:16
// INPUTS: CLK, VOTINT
// OUTPUTS: FIFOCTRLA, FIFOCTRLB, FIFOCTRLC
// INTERNAL SIGNALS: COLCNT[7:0]
//
module Collet (CLK, FIFOCTRLA, FIFOCTRLB, FIFOCTRLC, VOTINT);
input CLK;
input VOTINT;
output FIFOCTRLA;
output FIFOCTRLB
output FIFOCTRLC

reg FIFOCTRLA
reg FIFOCTRLB
reg FIFOCTRLC

// diagram signal declarations
reg [7:0]COLCNT, next_COLCNT;

// USER DEFINED ENCODED state machine: COLLECT
parameter SI =21)00,

52 = 21)01,
83 = 21)10,
84 = 21)11;

reg [l:0]CurrState_SregO, NextState_SregO;

// Diagram actions (continuous assignments allowed only: assign ...)
//diagram ACTIONS;

// Machine: SregO

// NextState logic (combinatorial)
always @ (VOTINT or CurrState_SregO)
begin

case (CurrState_SregO) // synopsys parallel_case full_case
SI:
begin

if (! VOTINT)
begin

NextState_SregO = S2;
end

end

124

S2:
begin

begin
NextState_SregO = S3;
FIF0CTRLA=1;
FEF0CTRLB=1;
FIF0CTRLC=1;
next COLCNT = 0;

end
end
S3:
begin

next.COLCNT = COLCNT+1;
if (COLCNT==8'bl0100100)
begin

NextState_SregO = S4;
end

end
S4:
begin

begin
NextState_SregO = Sl;
FIFOCTRLA=0;
FFOCTRLB=0;
FIFOCTRLC=0;

end
end

endcase
end

// Current State Logic (sequential)
always @ (posedge CLK)
begin

CurrState_SregO <= NextState_SregO;
end

// Registered outputs logic
always @ (posedge CLK)
begin

COLCNT <= next_COLCNT;
end

endmodule

125

// Author: Damen Hofheinz
// File: MODECNTRL.v
// created: 08/15/00 17:33:14
// INPUTS: UARTINT, CLK, AIN[7:0]
// OUTPUTS: CUARTADSN, FORCE, INO, CTRLADDR[2:0], CURDENN,
//CUARTCSN, MDCTRL[7:0]
// INTERNAL SIGNALS: NONE

module rdmach (AIN, BRDRST, CLK, CTRLADDR, CUARTADSN,
CUARTCSN, CURDENN, FORCE, INO, MDCTRL, SYSRST, UARTINT);

input [7:0]AIN;
input CLK;
input UARTINT;
output BRDRST;
output [2:0]CTRLADDR;
output CUARTADSN;
output CUARTCSN;
output CURDENN;
output FORCE;
output INO;
output [7:0]MDCTRL;
output SYSRST;

reg BRDRST;
reg [2:0]CTRLADDR;
reg CUARTADSN, next_CUARTADSN;
reg CUARTCSN;
reg CURDENN;
reg FORCE;
reg INO;
reg [7:0]MDCTRL, next_MDCTRL;
reg SYSRST;

// SYMBOLIC ENCODED state machine: SregO
parameter SI = 4t>0000,

810 = 41)0001,
S2 = 4t)0010,
83=41)0011,
S4 = 41)0100,
85 = 4150101,
86 = 41)0110,
87 = 41)0111,

126

88 = 4151000,
S9 = 41)1001;

reg [3:0]CurrState_Sreg0, NextState_SregO;

// Machine: MODECNTRL
// NextState logic (combinatorial)
always @ (AIN or UARTINT or CurrState_SregO)
begin

case (CurrState_SregO) // synopsys parallel_case full_case
SI:
begin

if (UARTINT)
begin

NextState_SregO = S2;
CUARTCSN=1;
INO=l;
FORCE=0;
SYSRST=0;
BRDRST=0;

end
end
S10:
begin

FORCE=l;
end
S2:
begin

begin
NextState_Sreg0 = S3;
CTRLADDR[2:0]=3'B010;

end
end
S3:
begin

begin
NextState_SregO = S4;
next_CUARTADSN=l;

end
end
S4:
begin

begin
NextState_SregO = S5;

127

end

CURDENN=1;
end

end
S5:
begin

begin
NextState_SregO = S6;
next_MDCTRL[7:0] = AIN;

end
end
S6:
begin

begin
NextState_SregO = S7;
CURDENN=0;
CUARTCSN=0;
INO=0;

end
end
S7:
begin

if (MDCTRL[0])
begin

NextState_SregO = S10;
end
else if (MDCTRL[2])
begin

NextState_SregO = S8;
end
elseif(MDCTRL[l])
begin

NextState_SregO = S9;
end

end
S8:
begin

BRDRST=1;
end
S9:
begin

SYSRST=1;
end

endcase

128

// Current State Logic (sequential)
always @ (posedge CLK)
begin

CurrState_SregO <= NextState_SregO;
end

// Registered outputs logic
always @ (posedge CLK)
begin

CUARTADSN <= next_CUARTADSN;
MDCTRL <= next_MDCTRL;

end

endmodule

129

THIS PAGE INTENTIONALLY LEFT BLANK

130

APPENDIX C PROGRAM FILES

This Appendix lists the Makefile and program files utilized with the Generic

Cross Compiler provided by IDT.

/^fc ^fc ^k sfc 5k ^k sk sk sk ik ik sk sk sfc 5k sk «k 5k 5fc 5k 5k 5k 5k 2k 5fc 5fc 5k ifc sk sfc sk sk sk rfc 5k 5k 5fc 5k 5k *k 5fc 5k 5fc 5k 5k 5k 5k 5k 5k 5fc 5k 5k rk 5fc *k 5k 5fc 5k 5k 5k 5k 5fc *k 5k 5k 5k 5k /

/*Name: makefile */
/*Written by: Damen Hofheinz */
/*Date: 9/28/00 */
/*Name: Makefile */
/*Function: This file is utilized by the GCC compiler to assemble and link the */
/* program file. */
/* */
/* */

/* NAME OF FILE TO ASSEMBLE */
/* DEFINES DIRECTORY OF FILE LOCATIONS */

EXE=rom
STARTUPDIR=/IDTC5.1
INCDIR=/IDTC5.1
LBDIR=/IDTC5.1
OPTFLAGS=-02

/* DEFINES NAME OF OBJECT FILE */
OBJS= $(EXE).o

/* DEFINES NAME OF MOTOROLA S-RECORD FILE TO MAKE*/
all: $(EXE).sre

/* CONSTRUCTS .SRE FJLE
$(EXE).sre: $(EXE)

objcopy -O srec $(EXE) $(EXE).sre

/* CREATES .EXE FILE FROM OBJECT FILE AND LINKS */
/* TO ADDR 0XBFC00000 */

$(EXE): $(OBJS)

131

gcc -W1.-M -nostdlib $(OPTFLAGS) -L$(LffiDIR) -o $(EXE) -Ttext OxbfcOOOOO
$(OBJS) -lkil -lc -lm -link -lgcc > $(EXE).map

/* CREATES OBJECT FILE FROM ASSEMBLY LANGUAGE FILE */
$(EXE).o: $(EXE).S
gcc -nostdinc $(OPTFLAGS) -I$(INCDIR) -c -g -O -Wa,-alh $(EXE).S > $(EXE).lst

/* OPTION TO DELETE FILES FROM LAST RUN */
clean:

del *.o
del $(EXE).sre
del $(EXE)

132

#*!■ *1* *1- *L» ■»!* «il- *i* »«I* *I* *1* *1* *I* *I* *1* ■!- »1* *i* *1* *1* *!• *4* *1* ■!* ^ ^ •& ^ it ^ ^ ^ ^^ ^ ^ ^ ^ ^f ^ ^ ^ *fe yte ^ ^ ^ it ^ it it it ^f it it it it it it it it ^t it it it it it it it /

*/
*/
*/

/*Name: rom.s
/*Written by: Damen Hofheinz
/*Date: 9/28/00
/* */
/*Function: This program initializes the IDT3081 processor and reads program
/* instructions from ROM. The program then writes data to an
/* address location in the KSEGO memory segment that is
/* incremented after each write.
/*
/it it it it it it it it 2k it it 5k 5fc 5fc 5k 2k 2k 2k 2k sk 2k 5k 5k 5k 5fc *k sk 5fc 5k 5k 5k *fc *fc 5k 5fc 5k 5fc 5k 5k 5k ^z 5k Hz 5k 5k 5k /

/* startup code, noncacheable, no exceptions
*/

#include "mips.h"
#include "machine.h"
#include "iregdef.h"
#include "idtcpu.h"
#include "idtmon.h"

*/
*/
*/
*/
*/

.text
reset_exception:

j start
.align 8
.set noreorder
nop ; .set reorder
.align 7

general_exception:
j _exit

.globl start

.ent start

/* defines text section
/* aligns instruction to reset address
/* Upon reset program jumps to start

/* If the processor has a general
/* exception then it performs a jump to
/* the _exit label

/* global declaration of the label start

*/
*/
*/

*/
*/
*/

start:
.set noreorder

/* LOAD SETUP DATA INTO REGISTER VO */
/* SETUP DATA IS FORMED BY ORing DEFTNDED */
/* VARIABLE IN MIPS.H. SETUP IS: CPO USABLE AND IN */
/* KERNEL MODE, PROCESSOR IN BOOTSTRAP */
I* MODE AND CLEAR INTR MASKS. */

li vO,SR_PEISR_CUOISR_BEV

133

/* LOAD STATUS REGISTER WrTH SETUP DATA */
mtcO vO,CO_SR
nop

/* CLEAR SOFTWARE INTERRUPTS */
/* REQUIRED NOPS DUE TO REGISTER */
/* WRITE INSTRUCTION */

mtcO zero,CO_CAUSE
nop
nop
.set reorder

/* LOAD BEGINNING ADDR IN TO
t0,0xa0001000

I* ROM WRITE LOOP */
I* STORE DATA TO ADDRESS POINTED TO BY */
I* REGISTER TO. ADD 4 TO ADDRESS STORED IN */
I* REGISTER TO, THEN BRANCH TO LP. */

lp:
sw zero,(tO)
addu t0,4
and t0,~0x2000

b lp

/* CONTINUOS LOOP IF PROGRAM EXPERIENCES A */
/* GENERAL EXCEPTION */

_exit:
b _exit

.end start

134

/*Name: ramwrite.s */
/*Writtenby: Damen Hofheinz */
/*Date: 9/28/00 */
/* */

/*Function: This program initializes the IDT3081 processor, reads program */
/* instructions from ROM, and writes to RAM. The program */
/* writes data (Oxdeadbeef) to a RAM address location in the KSEG1 */
/* memory segment that is incremented. */
/* */

/* startup code, noncacheable, no exceptions */
#include "mips.h"
#include "machine.h"
#include "iregdef.h"
#include "idtcpu.h"
#include "idtmon.h"

.text
reset_exception:

j start
.align 8
.set noreorder
nop; .set reorder
.align 7

general_exception:
j -exit

.globl start

.ent start

start:
.set noreorder

/* LOAD SETUP DATA INTO REGISTER VO */
/* SETUP DATA IS FORMED BY ORing DEFINDED */
/* VARIABLE IN MIPS.H. SETUP IS: CPO USABLE AND IN */
/* KERNEL MODE, PROCESSOR IN BOOTSTRAP */
/* MODE AND CLEAR INTR MASKS. */

vO,SR PEISR CUOISR BEV

135

/* LOAD STATUS REGISTER WITH SETUP DATA */
mtcO vO,CO_SR
nop

/* CLEAR SOFTWARE INTERRUPTS */
/* REQUIRED NOPS DUE TO REGISTER */
/* WRITE INSTRUCTION */

mtcO zero,CO_CAUSE
nop
nop
.set reorder

/* LOAD BEGINNING RAM ADDRESS */
/* LOAD DATA IN TEMPORARY REGISTER */

li t0,0x80000000
li tl,Oxdeadbeef

/* RAM WRITE LOOP */
/* STORE DATA TO ADDRESS POINTED TO BY */
/* REGISTER TO. ADD 4 TO ADDRESS STORED IN */
/* REGISTER TO, THEN BRANCH TO LP. */

lp:
sw tl,(tO)
addu t0,4
and t0,~0x6000

b lp

_exit:
b _exit
.end start

136

/*****#***/

/*Name: uart.s /

/*Written by: Damen Hofheinz */

/*Date: 10/29/00 */

/* */

/*Function: This program initializes the EDT3081 processor, reads program */
/* instructions from ROM which initializes the UART. The program */

/* setups the UART in polling mode, 8 bits, no parity, 9600 baud. */

/* A continuous loop writes data to the UART output address */

/* that outputs ACSII character 0x23 or '#'. */

/* */
/######*********************#******#***«

#include "mips.h"
#include "machine.h"
#include "iregdef.h"
#include "idtcpu.h"
#include "idtmon.h"

.text
reset_exception:

j -exit
.align 8
.set noreorder
nop ; .set reorder
.align 7

general_exception:
.set noreorder
nop
li t0,0xfeedface
nop
.set reorder

j IP

.globl start

.ent start

start:
.set noreorder

/* LOAD SETUP DATA INTO REGISTER VO */
/* SETUP DATA IS FORMED BY ORing DEFINDED */
/* VARIABLE IN MIPS.H. SETUP IS: CP0 USABLE AND IN */
/* KERNEL MODE, PROCESSOR IN BOOTSTRAP */
/* MODE AND CLEAR INTR MASKS. */

137

li vO,SR_PEISR_CUOISR_BEV

/* LOAD STATUS REGISTER WITH SETUP DATA */
mtcO vO,CO_SR
nop

/* CLEAR SOFTWARE INTERRUPTS */
/* REQUIRED NOPS DUE TO REGISTER */
/* WRITE INSTRUCTION */

mtcO zero,CO_CAUSE
nop
nop
.set reorder

/*FIFO CONTROL REGISTER*/
/* ENABLE FIFOs */

li tl.Oxclclclcl
nop
sw tl,0xBFE00008
nop

/* LINE CONTROL REGISTER */
/* SET DLAB TO ONE AND DEFINE WORD LENGTH AS */
/* 8 BITS */

li tl,Ox83838383
nop
sw tl.OxBFEOOOOc
nop

/* MODEM CONTROL REGISTER */
/* SET UART IN POLLING MODE */

li 11,0x00000000
nop
sw tl.QxBFEOOOlO
nop

/* DIVISOR LATCH LSB REGISTER */
/* SET LOWER DTVISOR TO 72 DECIMAL */

li 11,0x48484848
nop
sw tl,0xBFE00000

138

nop
/* DIVISOR LATCH USB REGISTER */
/* CLEAR DIVISOR REGISTER */

li tl,0x00000000
nop
sw tl,0xBFE00004
nop

/* LINE CONTROL REGISTER */
/* SET DLAB TO ZERO TO ACCESS */
/*RCWTRANSMIT REGISTERS */

li 11,0x03030303
nop
sw tl,0xBFE0000C
nop

/* INTERRUPT ENABLE REGISTER */
/* DISABLE INTERRUPTS */

li 11,0x00000000
nop
sw tl,0xBFE00004
nop

/* WRITE LOOP. LOAD DATA INTO REGISTER */
/* Tl. STORE DATA (WRITE) TO UART TRANSMIT */
/* REGISTER. */

lp:
li tl,0x23222223
nop
sw tl,0xBFE00000
nop

nop
b lp /* branch back to lp */
nop

_exit:
b _exit
.end start

f sk sfa sk sic sfe sic sic sk sk sk sfc sfc sk sk sk sk sk sic sic sk sk sic sk sic sk sic sic sk sic sk sk sic sic sic sic sic sic sic sic sic sic rfc sic sic sic rfc sic sic sic sic sic sic sic sk sfc sic sic sic sic sic sic sic sic sic sic sic /

/*Name: uartio.s */
/*Written by: Damen Hofheinz */
/*Date: 11/05/00 */

139

/* */

/*Function: This program initializes the IDT3081 processor, reads program */
/* instructions from ROM which initializes the UART. The program */
/* setups the UART in autoflow mode, 8 bits, no parity, 9600 baud. */
/* A loop reads in data from the UART, adds 30 to this data and */
/* ouputs the modified data to the UART.*/
/* */

/* startup code, noncacheable, no exceptions */
#include "mips.h"
#include "machine.h"
#include "iregdef.h"
#include "idtcpu.h"
#include "idtmon.h"

.text
reset_exception:

j start
.align 8
.set noreorder
nop ; .set reorder
.align 7

general_exception:
.set noreorder
nop
li t0,0xfeedface
mfcO v0,C0_CAUSE
nop
.set reorder

j IP

.globl start

.ent start

start:
.set noreorder

/* LOAD SETUP DATA INTO REGISTER VO */
I* SETUP DATA IS FORMED BY ORing DEFENDED */
/* VARIABLE IN MIPS.H. SETUP IS: CPO USABLE AND IN */
/* KERNEL MODE, PROCESSOR IN BOOTSTRAP */
/* MODE AND CLEAR INTR MASKS. */

li v0,SR_PEISR_CU0ISR_CUHSR_BEVISR_IMASK8

140

/* LOAD STATUS REGISTER WITH SETUP DATA */
mtc'O v0,C0_SR
nop
mtcO zero,C0_CAUSE /* clear software interrupts */
nop /* rqd nops */
nop
.set reorder

/*FIFO CONTROL REGISTER*/
/* ENABLE FIFOs */
li tl,0xc7c7c7c7
nop
sw tl,0xBFE00008
nop

/* LINE CONTROL REGISTER */
/* SET DLAB TO ONE AND DEFINE WORD LENGTH AS */
/* 8 BITS */

li tl,0x83838383
nop
sw tl,OxBFEOO00c
nop

/* MODEM CONTROL REGISTER */
/* SET U ART IN POLLING MODE */

li tl,0x23232323
nop
sw tl,0xBFE00010
nop

/* DIVISOR LATCH LSB REGISTER */
/* SET LOWER DIVISOR TO 72 DECIMAL */

li tl,0x48484848
nop
sw tl,0xBFE00000
nop

/* DIVISOR LATCH USB REGISTER */
/* CLEAR DIVISOR REGISTER */

li tl,0x00000000
nop
sw tl,OxBFE00004

141

nop

/* LINE CONTROL REGISTER */
/* SET DLAB TO ZERO TO ACCESS */
/*RCV/TRANSMrr REGISTERS */

li 11,0x03030303
nop
sw tl,0xBFE0000C
nop

/* INTERRUPT ENABLE REGISTER */
/* DISABLE INTERRUPTS */

li 11,0x00000000
nop
sw tl,0xBFE00004
nop

/* OUTPUTS START CHARACTER # TO SCREEN */
lp:

li tl,0x23222223
nop
li t4,0x00000060
nop
li t5,0x00000001
nop

/* LOOP TO READ IN DATA, ADD 30, AND OUTPUT DATA */
xt: lw t2,0xBFE00014

nop
andi t2,t2,0x00000060
nop
bne t2,t4,xt
nop
sw tl,0xBFE00000
nop

gt: lw t3,0xBFE00014
nop
andi t3,t3,0x00000001
nop
bne t3,t5,gt
nop

142

lw t7,0xBFE00000
nop
li t2,0xDEADBEEF
nop
lw t2,0xBFE00014
nop
andi t2,t2,0x00000060
nop
bne t2,t4,xt
nop
addi t7,t7,32
nop
sw t7,0xBFE00000
nop

nop
b
nop

IP

exit:
b _exit
.end start

/* branch back to lp */

143

THIS PAGE INTENTIONALLY LEFT BLANK

144

APPENDIX D PART SELECTION
The following tables give a list of compatible radiation hardened and SEU tested

devices. The primary purpose of these tables is to assist in part selection for a space

flight ready TMR design.

145

H
or
o*
Ü
jo

O o
H
00

Ö
CD
<
o'
CD

-o
4^
>

O
H

o
2

4*
>
X
o
H
4^

00
2 o
4^
>
O x

2 ~

M 00
U V

d
K>
IO SO
K) -o o r 2
to
U\
H
►0

2
O
2

2
<
cn

H
50

o
H"M 50 r1

^-N

2 cn o < U) to
50 2 >i_, 4^

H O 2 X
2
Q

O
o C

H
co

O
n £ >

2

> Cd

C
a
a
5 cn

T] ^s

1 50
<

50
<

4* 2
O
2

4^
k-H H-< K-H »—*

a D a o
X
n
H

X
n 3 3 33

cn to to to to
o O o o to Ti 4*. i^> to

4*-
4^. O 4* cn Lfx

G O 50 i—»

2
Ö

so

X
SO

13

to
o
4^
cc
X
SO

to
X
so

SO so VO « VD *
00 oo SO SO SO SO
oo oo Ul Ul w w

V V M ►- UlU
— — © i*

00
o

to
o

M
E

V

M
E

V

6 M
E

V

6 M
E

V
 cn

<

2
cn
<

Cd

2
>
50

n
o
C
2
H
cn
50

4^
>
X
o
H ui
-a

2

O
n
H

r"
H
50
>
2
oo

>
50
H
cn
2
H
r
>
H
n
a:

2
O
2
cn
•n
O
c
2
a

a
3

>
H
to
oo

>
H
•n
to

4^
>
n -0

o
to

n to H n
o < n oi

4^
00 o O

Ul to
,1. n to 1 .

(_n <_/) i B , o
►< id o <—1

n O n t—1

oo ffl
50 cn
> TJ
2 50

a
to
CO 2
*
X
oo

o
H
-<
to
o

O H

o x
S OS
00 ^°
22
oo to
^- oo
to
oo
7t

to

2
cn
<

o

cn
<

n

m K-

cn 0\

T) Cd
r
a CO

C
00

H
50
O
<
m
50

SO SO SO SO SO
~J SO SO SO SO
Os Os L/l 1>J i_n

V to
Ui

to
O

to

2 cn
< <

oo
cn
50

>
r
cn
cn
50
O

rn n -J 2 2

> n
13
50
cn

o
H

O
2
cn

cn

as 00 0\
O

>
►"• 00 u> W

2
00

to
to
<;

to
4X c

2
a

H
2
C

o o £
o CO
o m

?o

00
G
cn
H
cn
oo
H cn
a
o o
H
oo
O
cn
<
n
cn
oo

146

5
-o

>
-0
4^
> 2 Ö 4^

>
5 >

H
to

>

to
>

>
H

50
Pi
z

-o X X 4^ -~j DC -J oo o ■J
O o n > to

to n o n to H P
Ul H H n to H to o < O ^
to 1 O OS

-o
4^
oo o o

Ul to
o i—* to u> H^ ^^ O to 1—* "Ö
Z 2

2 H
2

o
Oi
•—i

n
w
m
>v
r a

o
<—1

O

n
>
50
H

Z

X)
00 T1 Z

o
2!

1

Z
<

2
<

2

H 25 o 00 PI H- 00 PI

m
•1

13
o
>

S
r
PI

*T1
o
o
to

o
> r
H to

PI

50
O

ON

03

H
W

PI
50
H-t

>
r
PI

50

a
50

1 -p". ?o 00
C/3 PI PI o

3 H O z X
OO

>
H
50
n
<
w
50

no 00
t—t

2
a
o
n
H
>

O
o
H
>
r

C
H
>
2
Ö

2
00

>
3

X
oo

1

o

50
O
2

O
50
—4

T3
H

O
Cd PI ►< z
s a 2 to

i:
CO

G 1 25 r
5

o

Ti l>

CD

Ö
h—4.

a

§
50

5
o
DC

a
>

*> < H

Z X c G C C G G G G G 2
1—1

O
z fS' o © H H H H H H H H H s

o'
3

z 4^
4^ 4^

ut
£• 4*. O

to
00

to
to 4*.

to
oo ^ DC

w > > > > Ti < > T1 10 >
u>
X o n n o ^- to 2 n to > 50

ffi H H H H to
Ov o

oo ON 50 U
PJ t-1 oo oo oo 00

1—' ^I H PI
-1
Du
n>
3
CD

X
©
to
4^
o

4^ 4^
o '~- -o

us
4^

3
to
O
3
en

ON
4*.
to
4^
Ui
00

4^
<_n
3
en

Z
G

CO

Z
Pi a
a
PI

O PI
50 <:

o
o' 00
n>

r
Cß
(-»■

U> to to to
t-n

to <j\ 4^ to to U) O

3. 3. 3. 3. ►<

5 5_^ B_ 5 *~-'
(ji Lfi Ut 2

O
U\ Ul ^^ Ul U> Ul *~v U\ G

H
2

VO VO VO VO VO G VO VO VO G VO
o\ Os ON o\ ON -!

2
OV ON ON >-: ON

to to to 2 to to to to to S to
JO 50 JO Pi JO O 50 50 50 50 o
VO vo VO VO VO n VO VO VO o VO
ON ON 0\ > c> VO Os 4^ oo "■o

50

ON 5
VO VO to <

> 00
►9

ON
o 50

oo
VO

-J ^—s

T
T3

oo
OO
VO z

tj» W u> VO as O
a

H-t 4^ o O
a

»—*
o O o r O O o o

U)
O
ON C o

to
o
U)

© © © > O 2 O PO O 2 © po ©
50 n Cd ?o G 3> K! r X ^ «: £5 X X t-1

X X 2 X X O 2 X
2 2
2 2 "T3

*/» ■&e Vi ■e/» v> Q •«/> &> *zf> a •6«
50

)_i h—* h-^ VO i° H-^ 4^ to n
vo VO VO

4i.
4^ to

"oo
u>

O ON
to

PI
Ln -J Ul

>

147

THIS PAGE INTENTIONALLY LEFT BLANK

148

LIST OF REFERENCES

1. Payne, Jr., J. C, "Fault Tolerant Computing Testbed: A Tool for the Analysis of
Hardware and Software Fault Handling Techniques," Master's Thesis, Naval
Postgraduate School, Monterey, CA, December 1998.

2. Summers, Davids "Implementation of a Fault Tolerant Computing Testbed: A tool
for the analysis of hardware and software fault handling techniques," Master's
Thesis, Naval Postgraduate School, Monterey, CA, June 2000.

3. Groening, S. E., and Whitehouse, K. D., "Application of Fault-Tolerant Computing
for Spacecraft Using Commercial-Off-The-Shelf Microprocessors," Master's Thesis,
Naval Postgraduate School, Monterey, CA, June 2000.

4. Olsen, R. C. and Cleary, D. D., Introduction to the Space Environment, class notes for
PH2514. December 1997.

5. National Aeronautics and Space Administration. Solar Cell Array Design Handbook.
Vol. 1. Pasadena, CA, 1976.

6. Weste, N. H. E. and Eshraghian, K., Principals of CMOS VLSI Design: A Systems
Perspective, 2nd Edition, Addison-Wesley, Menlo Park, CA, 1994.

7. Savio, Chau. "Experience of using COTS Components for Deep Space Missions,"
Proceedings, 4th IEEE International Symposium on, 1999.

8. United Sates. Congress Senate. Committee on Commerce, Science, and
Transportation. Subcommittee on Science, Technology, and Space. Decline of the
U.S. electronics industry, U.S. G.P.O., 1990.

9. Shirvani, Philip P. and McCluskey, Edward J., Fault-Tolerant Systems in a Space
Environment: The CRC Argos Project. Standford University, December 1998.

10. Johnson, B. W., Design and Analysis of Fault Tolerant Digital Systems, Addison-
Wesley, New York, NY, 1989.

11. ATMEL Corporation. Online, Internet, Available:
www.atmel.com/atmel/faqs/962149423.htm

12. Integrated Device Technology, Inc., The IDT79R3071, IDT79R3081 RISController
Hardware User's Manual, Revision 2, Santa Clara, CA, 1994.

149

13. Xilinx Website. Online, Internet, Available: support.xilinx.com/xbrf/xbrf014.pdf

14. Messenger, G.C. and Ash, M.S., The Effects of Radiation on Electronics Systems,
Van Nostrand Rienhold, New York, NY, 1991.

15. Shaeffer, D.L. Kimbrough J.R., Wilburn J.W., Denton, S.M., Kaschmitter, J.L.,
Colella, N.J., Coakely, P.G., and Casteneda, C, "Proton-Induced SEU, Dose Effects,
and LEO Performance Predictions for R3000 Microprocessors," IEEE Transactions
on Nuclear Science, Vol. 39, No. 6, December 1992.

16. Shaeffer, D.L. Kimbrough J.R., Wilburn J.W., Denton, Shih, D., J.L., Colella, N.J.,
Coakely, P.G., Koga, R., Clark, D.A., Ullmann, J.L. and Casteneda, C, "Single Event
Effects and Performance Predictions for Space Applications of RISC Processors,"
IEEE Transactions on Nuclear Science, Vol. 41, No. 6, December 1994.

17. Xilinx, The Programmable Logic Data Book 1999, Xilinx Inc., 1999.

150

BIBLIOGRAPHY

1. Texas Instruments, Inc., "TL16C750 Asynchronous Communications Element with
64-Byte FIFOs and Autoflow Control," Online, Internet, Texas Instruments, Inc.,

2. Maxim Integrated Products, "MAXIM +5V-Powered, Multichannel RS-232
Drivers/Receivers," Online, Internet,
Available: http://pdfserv.maxim-ic.com/arpdf/1798.pdf

3. Atmel Corporation, "High Performance EE PLD: ATF22V10C," Online, Internet,
Available: http://www.atmel.com/atmel/acrobat/doc0735.pdf

4. Logical Devices, Inc., CUPL: Universal Compiler for Programmable Logic User
Guide, 1991.

5. Wakerly, J. F., Digital Design: Principals and Practices, 3rd ed., Prentice Hall, Upper
Saddle River, NJ, 2000.

6. Sternheim, Eliezer. Singh, Rajvir, and Trivedi, Yatin., Digital Design with Verilog
HDL, Cupertino, CA ,1990.

7. Van den Bout, David., The Practical Xilinx Designer Lab Book, Upper Saddle
River, NJ 1999.

8. Farquhar, Erin and Bunce, Philip., The MIPS Programmer's Handbook, San
Francisco, CA 1994.

151

THIS PAGE INTENTIONALLY LEFT BLANK

152

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4. Professor Herschel Loomis Code EC/Lm
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

5. Professor Alan Ross Code SP/Ra
Space Systems Academic Group
Naval Postgraduate School
Monterey, CA 93943-5110

6. Captain David C. Summers, USMC
300 Ammunition Avenue
Odenton,MD21113

7. Lieutenant Damen Hofheinz, USN
8322 Watchtower
San Antonio, TX 78250

153

